Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Microsc ; 2024 Apr 25.
Artigo em Italiano | MEDLINE | ID: mdl-38661499

RESUMO

Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.

2.
J Am Soc Nephrol ; 35(3): 261-280, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189228

RESUMO

SIGNIFICANCE STATEMENT: Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND: In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS: The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS: After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS: This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.


Assuntos
Acidose , Injúria Renal Aguda , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Calcitriol , Ácido Fólico , Inflamação , Interleucina-6 , Hormônio Paratireóideo , Fosfatos , RNA Mensageiro
3.
Am J Physiol Renal Physiol ; 326(1): F105-F117, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37881875

RESUMO

Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.


Assuntos
Injúria Renal Aguda , Ácido Fólico , Masculino , Feminino , Camundongos , Animais , Injúria Renal Aguda/patologia , Rim/patologia , Nitrogênio da Ureia Sanguínea , Camundongos Endogâmicos C57BL
4.
Mol Microbiol ; 121(4): 646-658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041391

RESUMO

Super-resolution fluorescence microscopy technologies developed over the past two decades have pushed the resolution limit for fluorescently labeled molecules into the nanometer range. These technologies have the potential to study bacterial structures, for example, macromolecular assemblies such as secretion systems, with single-molecule resolution on a millisecond time scale. Here we review recent applications of super-resolution fluorescence microscopy with a focus on bacterial secretion systems. We also describe MINFLUX fluorescence nanoscopy, a relatively new technique that promises to one day produce molecular movies of molecular machines in action.


Assuntos
Bactérias , Nanotecnologia , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos
5.
Methods Appl Fluoresc ; 11(1)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36541558

RESUMO

The resolution achievable with the established super-resolution fluorescence nanoscopy methods, such as STORM or STED, is in general not sufficient to resolve protein complexes or even individual proteins. Recently, minimal photon flux (MINFLUX) nanoscopy has been introduced that combines the strengths of STED and STORM nanoscopy and can achieve a localization precision of less than 5 nm. We established a generally applicable workflow for MINFLUX imaging and applied it for the first time to a bacterial molecular machinein situ, i.e., the injectisome of the enteropathogenY. enterocolitica. We demonstrate with a pore protein of the injectisome that MINFLUX can achieve a resolution down to the single molecule levelin situ. By imaging a sorting platform protein using 3D-MINFLUX, insights into the precise localization and distribution of an injectisome component in a bacterial cell could be accomplished. MINFLUX nanoscopy has the potential to revolutionize super-resolution imaging of dynamic molecular processes in bacteria and eukaryotes.


Assuntos
Bactérias , Microscopia de Fluorescência/métodos
6.
Pflugers Arch ; 474(11): 1201-1212, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074191

RESUMO

Studies addressing homeostasis of inorganic phosphate (Pi) are mostly restricted to murine models. Data provided by genetically modified mice suggest that renal Pi reabsorption is primarily mediated by the Na+/Pi cotransporter NaPi-IIa/Slc34a1, whereas the contribution of NaPi-IIc/Slc34a3 in adult animals seems negligible. However, mutations in both cotransporters associate with hypophosphatemic syndromes in humans, suggesting major inter-species heterogeneity. Urinary extracellular vesicles (UEV) have been proposed as an alternative source to analyse the intrinsic expression of renal proteins in vivo. Here, we analyse in rats whether the protein abundance of renal Pi transporters in UEV correlates with their renal content. For that, we compared the abundance of NaPi-IIa and NaPi-IIc in paired samples from kidneys and UEV from rats fed acutely and chronically on diets with low or high Pi. In renal brush border membranes (BBM) NaPi-IIa was detected as two fragments corresponding to the full-length protein and to a proteolytic product, whereas NaPi-IIc migrated as a single full-length band. The expression of NaPi-IIa (both fragments) in BBM adapted to acute as well to chronic changes of dietary Pi, whereas adaptation of NaPi-IIc was only detected in response to chronic administration. Both transporters were detected in UEV as well. UEV reflected the renal adaptation of the NaPi-IIa proteolytic fragment (but not the full-length protein) upon chronic but not acute dietary changes, while also reproducing the chronic regulation of NaPi-IIc. Thus, the composition of UEV reflects only partially changes in the expression of NaPi-IIa and NaPi-IIc at the BBM triggered by dietary Pi.


Assuntos
Vesículas Extracelulares , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Vesículas Extracelulares/metabolismo , Humanos , Rim/metabolismo , Camundongos , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Ratos , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
7.
Genomics ; 114(4): 110434, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35863675

RESUMO

Advances in RNA high-throughput sequencing and large-scale functional assays yield new insights into the multifaceted activities of transposed elements (TE) and many other previously undiscovered sequence elements. Currently, no tool for easy access, analysis, quantification, and visualization of alternatively spliced exons across multiple tissues or developmental stages is available. Also, analysis pipelines demand computational skills or hardware requirements, which often are hard to meet by wet-lab scientists. We developed ExoPLOT to enable simplified access to massive RNA high throughput sequencing datasets to facilitate the analysis of alternative splicing across many biological samples. To demonstrate the functonality of ExoPLOT, we analyzed the contributon of exonized TEs to human coding sequences (CDS). mRNA splice variants containing the TE-derived exon were quantified and compared to expression levels of TE-free splice variants. For analysis, we utilized 313 human cerebrum, cerebellum, heart, kidney, liver, ovary, and testis transcriptomes, representing various pre- and postnatal developmental stages. ExoPLOT visualizes the relative expression levels of alternative transcripts, e.g., caused by the insertion of new TE-derived exons, across different developmental stages of and among multiple tissues. This tool also provides a unique link between evolution and function during exonization (gain of a new exon) and exaptation (recruitment/co-optation) of a new exon. As input for analysis, we derived a database of 1151 repeat-masked, exonized TEs, representing all prominent families of transposons in the human genome and the collection of human consensus coding sequences (CCDS). ExoPLOT screened preprocessed RNA high-throughput sequencing datasets from seven human tissues to quantify and visualize the dynamics in RNA splicing for these 1151 TE-derived exons during the entire human organ development. In addition, we successfully mapped and analyzed 993 recently described exonized sequences from the human frontal cortex onto these 313 transcriptome libraries. ExoPLOT's approach to preprocessing RNA deep sequencing datasets facilitates alternative splicing analysis and significantly reduces processing times. In addition, ExoPLOT's design allows studying alternative RNA isoforms other than TE-derived in a customized - coordinate-based manner and is available at http://retrogenomics3.uni-muenster.de:3838/exz-plot-d/.


Assuntos
Processamento Alternativo , Elementos de DNA Transponíveis , Éxons , Humanos , RNA Mensageiro/genética , Análise de Sequência de RNA
8.
PLoS Pathog ; 18(5): e1010251, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604950

RESUMO

Yersinia enterocolitica employs a type three secretion system (T3SS) to translocate immunosuppressive effector proteins into host cells. To this end, the T3SS assembles a translocon/pore complex composed of the translocator proteins YopB and YopD in host cell membranes serving as an entry port for the effectors. The translocon is formed in a Yersinia-containing pre-phagosomal compartment that is connected to the extracellular space. As the phagosome matures, the translocon and the membrane damage it causes are recognized by the cell-autonomous immune system. We infected cells in the presence of fluorophore-labeled ALFA-tag-binding nanobodies with a Y. enterocolitica strain expressing YopD labeled with an ALFA-tag. Thereby we could record the integration of YopD into translocons and its intracellular fate in living host cells. YopD was integrated into translocons around 2 min after uptake of the bacteria into a phosphatidylinositol-4,5-bisphosphate enriched pre-phagosomal compartment and remained there for 27 min on average. Damaging of the phagosomal membrane as visualized with recruitment of GFP-tagged galectin-3 occurred in the mean around 14 min after translocon formation. Shortly after recruitment of galectin-3, guanylate-binding protein 1 (GBP-1) was recruited to phagosomes, which was accompanied by a decrease in the signal intensity of translocons, suggesting their degradation or disassembly. In sum, we were able for the first time to film the spatiotemporal dynamics of Yersinia T3SS translocon formation and degradation and its sensing by components of the cell-autonomous immune system.


Assuntos
Yersinia pseudotuberculosis , Yersinia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Galectina 3 , Sistemas de Secreção Tipo III/metabolismo , Yersinia/metabolismo , Yersinia pseudotuberculosis/metabolismo
9.
J Leukoc Biol ; 110(2): 217-218, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33155721
11.
Expert Opin Ther Targets ; 24(5): 477-488, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32191548

RESUMO

Introduction: The management of hyperphosphatemia in patients with chronic kidney disease (CKD) is complicated, requiring a multidisciplinary approach that includes dietary phosphate restriction, dialysis, and phosphate binders.Areas covered: We describe key players involved in regulating inorganic phosphate homeostasis and their differential role in healthy people and different stages of CKD. The contribution of paracellular and transcellular intestinal absorptive mechanisms are also examined. Finally, we illuminate recent therapeutic approaches for hyperphosphatemia in CKD. We searched PubMed/Medline (up to November 2019) using the following terms: chronic kidney disease, dialysis, diet, hyperphosphatemia, NaPi2b, nicotinamide, phosphate binder, secondary hyperparathyroidism, tenapanor and vascular calcification.Expert opinion: The precise mechanisms regulating intestinal phosphate absorption in humans is not completely understood. However, it is now established that this process involves two independent pathways: a) active transport (i.e. transcellular route, via specific ion transporters) and inactive transport (i.e. paracellular route across tight junctions). Dietary phosphate restriction and phosphate-binder use can lead to an undesirable maladaptive increase in phosphate uptake and promote active phosphate transport by increased expression of the gastrointestinal sodium-dependent phosphate transporter, NaPi2b. Nicotinamide may overcome these limitations through the inhibition of NaPi2b, by improved efficacy and reduced phosphate binder use and better compliance.


Assuntos
Hiperfosfatemia/terapia , Terapia de Alvo Molecular , Insuficiência Renal Crônica/complicações , Animais , Quelantes/farmacologia , Humanos , Hiperfosfatemia/etiologia , Niacinamida/farmacologia , Fosfatos/administração & dosagem , Fosfatos/sangue , Fosfatos/metabolismo , Diálise Renal , Insuficiência Renal Crônica/terapia
12.
Kidney Int ; 97(5): 920-933, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173037

RESUMO

Hypercalciuria is a common feature during metabolic acidosis and associates to nephrolithiasis and nephrocalcinosis. The mechanisms sensing acidosis and inducing increased urinary calcium excretion are still unknown. Here we tested whether mice deficient for proton-activated Ovarian cancer G-protein coupled receptor 1 (OGR1 or Gpr68) have reduced urinary excretion of calcium during chronic metabolic acidosis. In the kidney, OGR1 mRNA was found in cells of the glomerulus, proximal tubule, and interstitium including endothelial cells. Wild type (OGR1+/+) and OGR1 knockout (OGR1-/-) mice were given standard chow without (control) or loaded with ammonium chloride for one or seven days to induce acute or chronic metabolic acidosis, respectively. No differences in responding to the acid load were observed in the knockout mice, except for higher plasma bicarbonate after one day. Bone mineral density, resorption activity of osteoclasts, and urinary deoxypyridinoline were similar between genotypes. During metabolic acidosis the expression levels of key proteins involved in calcium reabsorption, i.e. the sodium/proton exchanger (NHE3), the epithelial calcium-selective channel TRPV5, and the vitamin D-dependent calcium binding protein calbindin-D28k were all higher in the knockout mice compared to wild type mice. This is consistent with the previous demonstration that OGR1 reduces NHE3 activity in proximal tubules of mice. Wild-type mice displayed a non-linear positive association between urinary proton and calcium excretion which was lost in the knockout mice. Thus, OGR1 is a pH sensor involved in the hypercalciuria of metabolic acidosis by controlling NHE3 activity in the proximal tubule. Hence, novel drugs modulating OGR1 activity may improve renal calcium handling.


Assuntos
Acidose , Cálcio , Receptores Acoplados a Proteínas G , Acidose/genética , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Prótons , Receptores Acoplados a Proteínas G/genética , Trocador 3 de Sódio-Hidrogênio
13.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 305-316, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30521870

RESUMO

The innate immune system is the first line of defense against pathogenic threats. For the early pathogen recognition and activation of cell protective mechanisms, germline-encoded pattern recognition receptors (PRRs) detect characteristic and evolutionary conserved pathogen-associated molecular patterns (PAMPs). PRRs are therefore key elements in the innate immune response; in addition, they sense danger-associated molecular patterns (DAMPs) that are released by host cell molecules under pathophysiological conditions. Formyl peptide receptors (FPRs) are G-protein-coupled PRRs that respond to a surprisingly broad range of ligands, derived from both pathogens and host cells. Here, we exemplary discuss ligands in order to illustrate the wide pathophysiological relevance of the FPR signaling axis in case of e.g., chronic inflammations and to underscore its potential therapeutic value in the light of "biased agonism", a modern concept of GPCR (G-protein coupled receptors) activation. These novel insights into the GPCR receptor biochemistry will hopefully (re)stimulate FPR-related research and lead to novel strategies for the urgently needed development of drugs with pharmacologically advantageous characteristics.


Assuntos
Receptores de Formil Peptídeo/metabolismo , Receptores de Formil Peptídeo/fisiologia , Alarminas/metabolismo , Animais , Humanos , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Ligantes , Camundongos , Moléculas com Motivos Associados a Patógenos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
14.
Dtsch Med Wochenschr ; 143(20): 1460-1465, 2018 10.
Artigo em Alemão | MEDLINE | ID: mdl-30286495

RESUMO

UPDATE ON DIABETIC NEPHROPATHY 2018: The prevalance of elevated albuminuria in patients with diabetes is decreasing, while that of reduced eGFR is increasing, probably owing to more stringent blood pressure and blood glucose control.Well validated online score calculators for risk for renal replacement therapy, cardiovascular events and death are available online.Clinical variables remain more suited than histology for predicting end stage renal disease. Extracapillary hypercellularity, segmental sclerosis and exsudative lesions could represent a distinct risk phenotype.SGLT-2-inhibitors and GLP-1 analogues provide significant reductions of micro- and macrovascular end points. SGLT-2-inhibitors can only be prescribed at eGFR > 60 ml/min/1,73 m2, GLP-1 analogues and metformin at eGFR > 30 ml/min/1,73 m2.The ACC/AHA guideline 2017 defines arterial hypertension at blood pressure ≥ 130/80 mmHg, the ESC/ESH guideline 2018 at ≥ 140/90 mmHg. The blood pressure goal for patients with diabetes is < 130/80 mmHg, if well tolerated. ESC/ESH 2018 recommend not lowering blood pressure lower than 120/70 mmHg, in persons aged ≥ 65 years, systolic blood pressure 130 - < 140 mmHg is recommended.


Assuntos
Nefropatias Diabéticas , Pressão Sanguínea , Humanos , Hipertensão , Falência Renal Crônica , Guias de Prática Clínica como Assunto
15.
Nat Commun ; 9(1): 1711, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29703884

RESUMO

To cause disease in maize, the biotrophic fungus Ustilago maydis secretes a large arsenal of effector proteins. Here, we functionally characterize the repetitive effector Rsp3 (repetitive secreted protein 3), which shows length polymorphisms in field isolates and is highly expressed during biotrophic stages. Rsp3 is required for virulence and anthocyanin accumulation. During biotrophic growth, Rsp3 decorates the hyphal surface and interacts with at least two secreted maize DUF26-domain family proteins (designated AFP1 and AFP2). AFP1 binds mannose and displays antifungal activity against the rsp3 mutant but not against a strain constitutively expressing rsp3. Maize plants silenced for AFP1 and AFP2 partially rescue the virulence defect of rsp3 mutants, suggesting that blocking the antifungal activity of AFP1 and AFP2 by the Rsp3 effector is an important virulence function. Rsp3 orthologs are present in all sequenced smut fungi, and the ortholog from Sporisorium reilianum can complement the rsp3 mutant of U. maydis, suggesting a novel widespread fungal protection mechanism.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Proteínas de Plantas/imunologia , Ustilago/patogenicidade , Zea mays/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Genoma Fúngico , Manose/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ustilago/genética , Ustilago/metabolismo , Virulência , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Zea mays/microbiologia
16.
Cell Mol Life Sci ; 71(2): 311-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23715859

RESUMO

Annexin A10 is the latest identified member of the annexin family of Ca(2+)- and phospholipid-binding proteins. In previous studies, downregulation of annexin A10 was correlated with dedifferentiation, invasion, and tumor progression, pointing to a possible tumor suppressor role. However, the biochemical characteristics and functions of annexin A10 remain unknown. We show that annexin A10 displays biochemical characteristics atypical for an annexin, indicating a Ca(2+)- and membrane-binding-independent function. Annexin A10 co-localizes with the mRNA-binding proteins SFPQ and PSPC1 at paraspeckles, an only recently discovered nuclear body, and decreases paraspeckle numbers when overexpressed in HeLa cells. In addition, annexin A10 relocates to dark perinucleolar caps upon transcriptional inhibition of RNA polymerase II. We mapped the cap-binding function of annexin A10 to the proximal part of the core domain, which is missing in the short isoform of annexin A10, and show its independence from the remaining functional type II Ca(2+)-binding site. In contrast to this, paraspeckle recruitment required additional core regions and was negatively affected by the mutation of the last type II Ca(2+)-binding site. Additionally, we show that overexpression of annexin A10 in HeLa cells increases their sensitivity to apoptosis and reduces colony formation. The identification of unique nuclear and biochemical characteristics of annexin A10 points towards its membrane-independent role in paraspeckle-associated mRNA regulation or processing.


Assuntos
Anexinas/metabolismo , Núcleo Celular/metabolismo , Animais , Anexinas/análise , Anexinas/genética , Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Núcleo Celular/ultraestrutura , Cães , Doxorrubicina/toxicidade , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Proteínas Nucleares/metabolismo , Fator de Processamento Associado a PTB , Isoformas de Proteínas/metabolismo , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
J Int Soc Sports Nutr ; 10(1): 16, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531361

RESUMO

BACKGROUND: The purpose was to investigate the effects of one dose of NaHCO3 per day for five consecutive days on cycling time-to-exhaustion (Tlim) at 'Critical Power' (CP) and acid-base parameters in endurance athletes. METHODS: Eight trained male cyclists and triathletes completed two exercise periods in a randomized, placebo-controlled, double-blind interventional crossover investigation. Before each period, CP was determined. Afterwards, participants completed five constant-load cycling trials at CP until volitional exhaustion on five consecutive days, either after a dose of NaHCO3 (0.3 g·kg-1 body mass) or placebo (0.045 g·kg-1 body mass NaCl). RESULTS: Average Tlim increased by 23.5% with NaHCO3 supplementation as compared to placebo (826.5 ± 180.1 vs. 669.0 ± 167.2 s; P = 0.001). However, there was no time effect for Tlim (P = 0.375). [HCO3-] showed a main effect for condition (NaHCO3: 32.5 ± 2.2 mmol·l-1; placebo: 26.2 ± 1.4 mmol·l-1; P < 0.001) but not for time (P = 0.835). NaHCO3 supplementation resulted in an expansion of plasma volume relative to placebo (P = 0.003). CONCLUSIONS: The increase in Tlim was accompanied by an increase in [HCO3-], suggesting that acidosis might be a limiting factor for exercise at CP. Prolonged NaHCO3 supplementation did not lead to a further increase in [HCO3-] due to the concurrent elevation in plasma volume. This may explain why Tlim remained unaltered despite the prolonged NaHCO3 supplementation period. Ingestion of one single NaHCO3 dose per day before the competition during multiday competitions or tournaments might be a valuable strategy for performance enhancement. TRIAL REGISTRATION: Trial registration: ClinicalTrials.gov Identifier NCT01621074.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA