Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 678: 227-238, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075590

RESUMO

An increase of dissolved organic carbon (DOC) in inland waters has been reported across the northern temperate region but the effects of this on whole lake ecosystems, often combined with other anthropogenic stressors like nutrient inputs and warming, are poorly known. The effects of these changes on different component of the ecosystem were assessed in an experiment using twenty-four large (3000L) outdoor mesocosms simulating shallow lakes. Two different temperature regimes (ambient and ambient +4 °C) combined with three levels of organic matter (OM, added as filtered peaty water), simulating the DOC increase that is predicted to take place over the next 4 to 21 years were used. Neither temperature nor OM had significant effects on net ecosystem production, respiration or gross primary production. Phytoplankton chlorophyll a concentration was not significantly affected by warming, however in summer, autumn and winter it was significantly higher in mesocosms receiving intermediate OM levels (July-Feb DOC concentrations 2-6 mg L-1). Summer cyanobacterial blooms were highest in intermediate, and lowest in the highest OM treatments. OM concentration also influenced total macroinvertebrate abundance which was greater in spring and summer in mesocosms with intermediate and high OM. Fish abundance was not significantly affected by OM concentration, but abundance was greater in ambient (55 fish subsample-1) compared to heated mesocosms (17 fish subsample-1) and maximum abundance occurred two weeks later compared to heated mesocosms. The results suggest that changes in OM may have a greater effect on shallow lakes than temperature and that phytoplankton, especially cyanobacteria, benefit from intermediate OM concentrations, therefore, nuisance algal blooms might increase in relatively clear shallow eutrophic lakes where DOC concentrations increase.


Assuntos
Ecossistema , Monitoramento Ambiental , Eutrofização , Aquecimento Global , Lagos , Mudança Climática
2.
Water Res ; 46(14): 4532-42, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22698253

RESUMO

We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOCL⁻¹). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r² = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).


Assuntos
Água Doce/química , Modelos Químicos , Compostos Orgânicos/análise , Compostos Orgânicos/normas , Raios Ultravioleta , Absorção/efeitos da radiação , Carbono/análise , Solubilidade/efeitos da radiação , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA