Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
ACS ES T Water ; 4(4): 1166-1176, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633372

RESUMO

The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.

2.
J Hazard Mater ; 450: 131079, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857828

RESUMO

Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO2 impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO2 enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO2 (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg-1. Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg-1 enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO2 weakened the effects of SDZ at 0.5 mg kg-1 following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO2 significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO2 could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.


Assuntos
Antibacterianos , Sulfadiazina , Antibacterianos/farmacologia , Dióxido de Carbono/farmacologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Solo/química , Aminoglicosídeos , Microbiologia do Solo
3.
Environ Toxicol Chem ; 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920339

RESUMO

The extent to which chemicals bioaccumulate in aquatic and terrestrial organisms represents a fundamental consideration for chemicals management efforts intended to protect public health and the environment from pollution and waste. Many chemicals, including most pharmaceuticals and personal care products (PPCPs), are ionizable across environmentally relevant pH gradients, which can affect their fate in aquatic and terrestrial systems. Existing mathematical models describe the accumulation of neutral organic chemicals and weak acids and bases in both fish and plants. Further model development is hampered, however, by a lack of mechanistic insights for PPCPs that are predominantly or permanently ionized. Targeted experiments across environmentally realistic conditions are needed to address the following questions: (1) What are the partitioning and sorption behaviors of strongly ionizing chemicals among species? (2) How does membrane permeability of ions influence bioaccumulation of PPCPs? (3) To what extent are salts and associated complexes with PPCPs influencing bioaccumulation? (4) How do biotransformation and other elimination processes vary within and among species? (5) Are bioaccumulation modeling efforts currently focused on chemicals and species with key data gaps and risk profiles? Answering these questions promises to address key sources of uncertainty for bioaccumulation modeling of ionizable PPCPs and related contaminants. Environ Toxicol Chem 2022;00:1-11. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

4.
Environ Sci Pollut Res Int ; 29(11): 16749-16757, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997518

RESUMO

The sixth UN Sustainable Development Goal, Clean Water and Sanitation, directly underpins other goals of Health, Life in Water and Sustainable Cities. We highlight that poor sanitation, exemplified through some of the highest concentrations of pharmaceuticals ever detected in rivers, will amplify societal and environmental stress where climate-induced reductions in flow are predicted. Rapidly growing urban centres with inadequate water treatment works will need to prioritise water quality improvement before supply reductions become a reality. For 23 river locations within Kathmandu City and the Annapurna region, Nepal, we show the presence of 28 of 35 monitored human-use pharmaceuticals. Concentrations of antibiotics measured in this sampling campaign in both Kathmandu City (sulfamethazine, metronidazole and ciprofloxacin) and rural locations (ciprofloxacin) are in excess of predicted no effect concentrations, suggesting these sites are at risk of proliferating antimicrobial resistance as well as affecting other ecotoxicological endpoints. It is anticipated that climate-induced reductions in flow combined with contaminated river systems will amplify future societal and environmental stress.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
5.
Sci Total Environ ; 754: 141898, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916483

RESUMO

Antibiotic resistance and rising CO2 levels are considered among the most significant challenges we will face in terms of global development over the following decades. However, the impact of elevated CO2 on soil antibiotic resistance has rarely been investigated. We used a free-air CO2 enrichment system to investigate the potential risks posed by applying mineral and organic fertilizers to paddy soil at current CO2 concentration (370 ppm) and future elevated CO2 (eCO2, 570 ppm predicted for 2100). Organic fertilizer substitution (substituting the mineral fertilizer by 50% N) alone increased the plant uptake and soil residue of sulfamethazine, and enriched sulfonamide resistance genes (sul1, sul2), tetracycline resistance genes (tetG, tetM) and class 1 integron (intl1). But it decreased the rice grain yield (by 7.6%). Comparatively, eCO2 decreased the sul2, tetG and intl1 gene abundances by organic fertilizer substitution, and meanwhile increased grain yield (by 8.4%). Proteobacteria and Nitrospirae were potential hosts of antibiotic resistance genes (ARGs). Horizontal gene transfer via intl1 may play an important role in ARGs spread under eCO2. Results indicated that future elevated CO2 concentration could modify the effects of organic fertilizer substitution on rice yield and soil ARGs, with unknown implications for future medicine and human health.


Assuntos
Fertilizantes , Oryza , Antibacterianos , Dióxido de Carbono/análise , Resistência Microbiana a Medicamentos/genética , Fertilizantes/análise , Solo
6.
J Hazard Mater ; 392: 122469, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32193115

RESUMO

Sorption is one of the key process that affects the fate and mobility of pharmaceuticals in the soil environment. Several models have been developed for estimating the sorption of organic chemicals, including ionisable compounds, in soil. However, the applicability of these models to pharmaceuticals has not been extensively tested. In this study, we generated a high-quality dataset on the sorption of twenty-one pharmaceuticals in different soil types and used these data to evaluate existing models and to develop new improved models. Sorption coefficients (Kd) of the pharmaceuticals ranged from 0.2 to 1249.2 L/kg. Existing models were unable to adequately estimate the measured sorption data. Using the data, new models were developed, incorporating molecular and soil descriptors, that outperformed the published models when evaluated against external data sets. While there is a need for further evaluation of these new models against broader sorption datasets obtained at environmentally relevant concentrations, in the future they could be highly useful in supporting environmental risk assessment and prioritization efforts for pharmaceutical ingredients.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas/química , Poluentes do Solo/química , Adsorção , Relação Quantitativa Estrutura-Atividade
7.
Toxics ; 8(1)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053896

RESUMO

In order to assess the environmental risk of a pharmaceutical, information is needed on the sorption of the compound to solids. Here we use a high-quality database of measured sorption coefficients, all determined following internationally recognised protocols, to evaluate models that have been proposed for estimating sorption of pharmaceuticals from chemical structure, some of which are already being used for environmental risk assessment and prioritization purposes. Our analyses demonstrate that octanol-water partition coefficient (Kow) alone is not an effective predictor of ionisable pharmaceutical sorption in soils. Polyparameter models based on pharmaceutical characteristics in combination with key soil properties, such as cation exchange capacity, increase model complexity but yield an improvement in the predictive capability of soil sorption models. Nevertheless, as the models included in this analysis were only able to predict a maximum of 71% and 67% of the sorption coefficients for the compounds to within one log unit of the corresponding measured value in soils and sludge, respectively, there is a need for new models to be developed to better predict the sorption of ionisable pharmaceuticals in soil and sludge systems. The variation in sorption coefficients, even for a single pharmaceutical across different solid types, makes this an inherently difficult task, and therefore requires a broad understanding of both chemical and sorbent properties driving the sorption process.

8.
Environ Int ; 134: 105248, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711020

RESUMO

There has been a substantial research focus on the presence of pesticides in flowers and the subsequent exposure to honeybees. Here we demonstrate for the first time that honeybees can also be exposed to pharmaceuticals, commonly present in wastewater. Residues of carbamazepine (an anti-epileptic drug) up to 371 ng/mL and 30 µg/g were detected in nectar and pollen sampled from zucchini flowers (Cucurbita pepo) grown in carbamazepine spiked soil (0.5-20 µg/g). Under realistic exposure conditions from the use of recycled wastewater, carbamazepine concentrations were estimated to be 0.37 ng/L and 30 ng/kg in nectar and pollen, respectively. Incorporation of environmentally relevant carbamazepine residues in nectar and pollen into a modelling framework able to simulate beehive dynamics including the honeybee foraging activity at the landscape scale (BEEHAVE and BEESCOUT) enabled the simulation of carbamazepine translocation from zucchini fields into honeybee hives. Carbamazepine accumulation was modelled in 11 beehives across a 25 km2 landscape over three years chosen to represent distinct climatic conditions. During a single flowering period, carbamazepine concentrations were simulated to range between 0 and 2478 ng per beehive. The amount of carbamazepine gathered not only varied across the simulated years but there were also differences in accumulation of carbamazepine between beehives within the same year. This work illustrates a fundamental first step in assessing the risk of pharmaceuticals to bees through realistic scenarios by demonstrating a method to quantify potential exposure of honeybees at the landscape scale. Pharmaceuticals are being inadvertently but increasingly applied to agricultural lands globally via the use of wastewater for agricultural irrigation in response to water scarcity problems. We have demonstrated a route of pharmaceutical exposure to honeybees via contaminated nectar and pollen. Given the biological potency of pharmaceuticals, accumulation of these chemicals in nectar and pollen suggest potential implications for honeybee health, with unknown ecosystem consequences.


Assuntos
Águas Residuárias , Animais , Abelhas , Ecossistema , Flores , Néctar de Plantas , Pólen
9.
Environ Sci Technol ; 53(24): 14083-14090, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31725273

RESUMO

Irrigation with treated wastewater (TWW) and application of biosolids introduce numerous pharmaceutical and personal care products (PPCPs) into agro-food systems. While the use of TWW and biosolids has many societal benefits, introduction of PPCPs in production agriculture poses potential food safety and human health risks. A comprehensive risk assessment and management scheme of PPCPs in agro-food systems is limited by multiple factors, not least the sheer number of investigated compounds and their diverse structures. Here we follow the fate of PPCPs in the water-soil-produce continuum by considering processes and variables that influence PPCP transfer and accumulation. By analyzing the steps in the soil-plant-human diet nexus, we propose a tiered framework as a path forward to prioritize PPCPs that could have a high potential for plant accumulation and thus pose greatest risk. This article examines research progress to date and current research challenges, highlighting the potential value of leveraging existing knowledge from decades of research on other chemicals such as pesticides. A process-driven scheme is outlined to derive a short list that may be used to refocus our future research efforts on PPCPs and other analogous emerging contaminants in agro-food systems.


Assuntos
Cosméticos , Preparações Farmacêuticas , Poluentes do Solo , Poluentes Químicos da Água , Agricultura , Humanos , Solo , Águas Residuárias
10.
Water Environ Res ; 91(10): 1103-1113, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420905

RESUMO

A review of 82 papers published in 2018 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, microplastics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Fate and Occurrence, Pharmaceutical Metabolites, Anthelmintics, Microplastics, and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings. Newer classes of contaminants include human and veterinary pharmaceuticals. Research in microplastics and nanomaterials shows that these also occur in agricultural environments and will likely be topics of future work.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Agricultura , Ecologia , Humanos , Plásticos
11.
Environ Sci Process Impacts ; 21(4): 605-622, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30932118

RESUMO

Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity. However, reclaimed wastewater contains pollutants which are introduced to the agro-environment during the irrigation process. While water reuse guidelines do consider selected classes of pollutants, they do not account for the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these may pose. Here we use source-pathway-receptor analysis (S-P-R) to develop a holistic framework for evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on human and ecosystem health and evaluate the data availability for the framework components. The developed framework comprised of 34 processes and compartments but a good level of knowledge was available for only five of these suggesting that currently it is not possible to fully establish the impacts of pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five areas prioritised in terms of future research are needed before we are able to fully quantify the agricultural and human health risks associated with reclaimed wastewater use.


Assuntos
Agricultura , Ecossistema , Preparações Farmacêuticas/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Animais , Animais Selvagens , Humanos , Solo , Poluentes Químicos da Água/toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-29714645

RESUMO

Pharmaceuticals are ubiquitous in the natural environment with concentrations expected to rise as human population increases. Environmental risk assessments are available for a small portion of pharmaceuticals in use, raising concerns over the potential risks posed by other drugs that have little or no data. With >1900 active pharmaceutical ingredients in use, it would be a major task to test all of the compounds with little or no data. Desk-based prioritization studies provide a potential solution by identifying those substances that are likely to pose the greatest risk to the environment and which, therefore, need to be considered a priority for further study. The aim of this review was to (1) provide an overview of different prioritization exercises performed for pharmaceuticals in the environment and the results obtained; and (2) propose a new holistic risk-based prioritization framework for drugs in the environment. The suggested models to underpin this framework are discussed in terms of validity and applicability. The availability of data required to run the models was assessed and data gaps identified. The implementation of this framework may harmonize pharmaceutical prioritization efforts and ensure that, in the future, experimental resources are focused on molecules, endpoints, and environmental compartments that are biologically relevant.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Medição de Risco/métodos , Humanos , Modelos Teóricos
13.
Water Res ; 137: 72-85, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544205

RESUMO

Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.


Assuntos
Preparações Farmacêuticas/análise , Rios/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Cidades , Monitoramento Ambiental , Modelos Teóricos , Estações do Ano , Análise Espaço-Temporal , Espectrometria de Massas em Tandem , Reino Unido , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Águas Residuárias/química
14.
Sci Total Environ ; 628-629: 18-25, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428856

RESUMO

Reuse of treated wastewater for irrigation of crops is growing in arid and semi-arid regions, whilst increasing amounts of biosolids are being applied to fields to improve agricultural outputs. Due to incomplete removal in the wastewater treatment processes, pharmaceuticals present in treated wastewater and biosolids can contaminate soil systems. Benzodiazepines are a widely used class of pharmaceuticals that are released following wastewater treatment. Benzodiazepines are represented by a class of compounds with a range of physicochemical properties and this study was therefore designed to evaluate the influence of soil properties on the sorption behaviour and subsequent uptake of seven benzodiazepines (chlordiazepoxide, clonazepam, diazepam, flurazepam, oxazepam, temazepam and triazolam) in two plant species. The sorption and desorption behaviour of benzodiazepines was strongly influenced by soil type and hydrophobicity of the chemical. The partitioning behaviour of these chemicals in soil was a key controller of the uptake and accumulation of benzodiazepines by radish (Raphanus sativus) and silverbeet (Beta vulgaris). Benzodiazepines such as oxazepam that were neutral, had low sorption coefficients (Kd) or had pH-adjusted log octanol-water partition coefficients (log Dow, pH6.3) values close to 2 had the greatest extent of uptake. Conversely, benzodiazepines such as flurazepam that had an ionised functional groups and greater Kd values had comparatively limited accumulation in the selected plant species. Results also revealed active in-plant metabolism of benzodiazepines, potentially analogous to the known metabolic transformation pathway of benzodiazepines in humans. Along with this observed biological transformation of benzodiazepines in exposed plants, previously work has established the widespread presence of the plant signalling molecule γ-amino butyric acid (GABA), which is specifically modulated by benzodiazepines in humans. This highlights the need for further assessment of the potential for biological activity of benzodiazepines following their plant uptake.


Assuntos
Benzodiazepinas/metabolismo , Produtos Agrícolas/metabolismo , Poluentes do Solo/metabolismo , Humanos , Solo , Águas Residuárias
15.
Environ Toxicol Chem ; 37(4): 1122-1130, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29193285

RESUMO

Since the detection of active pharmaceutical ingredients (APIs) in various environmental media, research has explored the potential uptake and toxicity of these chemicals to species inhabiting these matrices. Specifically, pharmaceuticals, including the antiepileptic API carbamazepine (CBZ), are taken up from soil by a range of plants. Many short-term studies have also suggested that certain APIs induce toxicity in plants. However, the effects of APIs on fruiting plants remain relatively unexplored. The present study investigated the uptake, bioaccumulation, and toxicity of CBZ in Cucurbita pepo (zucchini) from seed to full maturity across a range of CBZ exposure concentrations in soil (0.1-20 mg/kg). Results of biomass, chlorophyll, starch and total nitrogen (N) concentration in C. pepo indicated toxicity at soil concentrations of ≥10 mg/kg. There were clear visual indications of increasing toxicity on leaves, including chlorosis and necrosis, from soil concentrations of 1 up to 20 mg/kg. The present study also revealed novel insights into the effect of CBZ accumulation on C. pepo fruiting: female C. pepo flowers were unable to set fruit when leaf concentrations were ≥14 mg/kg. These findings may have implications for future agricultural productivity in areas where reclaimed wastewater containing APIs is a source of irrigation. Detectable CBZ concentrations were found in edible C. pepo fruit, indicating the possibility of trophic transfer. Environ Toxicol Chem 2018;37:1122-1130. © 2017 SETAC.


Assuntos
Carbamazepina/metabolismo , Carbamazepina/toxicidade , Cucurbita/metabolismo , Solo/química , Testes de Toxicidade , Biomassa , Carbamazepina/química , Clorofila/análise , Cucurbita/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Amido/análise
16.
Environ Sci Technol ; 51(12): 6965-6971, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28553715

RESUMO

Here, we present and evaluate a combined experimental and modeling approach for characterizing the uptake of ionizable chemicals from water and sediments into aquatic organisms under different pH conditions. We illustrate and evaluate the approach for two pharmaceuticals (diclofenac and fluoxetine) and one personal care product ingredient (triclosan) for the oligochaete Lumbriculus variegatus. Initially, experimental data on the uptake of the three chemicals at two pH values were fitted using a toxicokinetic model to derive uptake and depuration constants for the neutral and ionized species of each molecule. The derived constants were then used to predict uptake from water and sediment for other pH conditions. Evaluation of predictions against corresponding experimental data showed good predictions of uptake for all test chemicals from water for different pH conditions and reasonable predictions of uptake of fluoxetine and diclofenac from a sediment. Predictions demonstrated that the level of uptake of the study chemicals, across pH ranges in European streams, could differ by up to a factor of 3035. Overall, the approach could be extremely useful for assessing internal exposure of aquatic organisms across landscapes with differing pH. This could help support better characterization of the risks of ionizable chemicals in the aquatic environment.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água/farmacocinética , Animais , Cosméticos , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Oligoquetos , Preparações Farmacêuticas , Rios , Triclosan
17.
Bull Environ Contam Toxicol ; 97(3): 316-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27443341

RESUMO

This study compared the uptake and depuration of four commonly used pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in two earthworm species (Lumbricus terrestris and Eisenia fetida). L. terrestris are a larger species and often found in deep burrows whereas E. fetida prefer to reside near the soil surface. Species burrowing habits and sizes may alter uptake by earthworms. All four pharmaceuticals were taken up into both L. terrestris and E. fetida tissue after 21 days exposure to spiked soil. Bioconcentration factors (BCFs) ranged between 1.72 and 29.83 for L. terrestris and 1.14 and 63.03 for E. fetida. For carbamazepine and diclofenac, BCFs were similar whereas for fluoxetine and orlistat, BCFs in E. fetida were more than double those seen in L. terrestris. Results indicate that uptake into earthworms cannot be generalised between species and that the influence of species traits can vary depending on the nature of the study chemical.


Assuntos
Oligoquetos/metabolismo , Preparações Farmacêuticas/metabolismo , Poluentes do Solo/metabolismo , Animais , Carbamazepina/metabolismo , Diclofenaco/metabolismo , Monitoramento Ambiental , Lactonas/metabolismo , Orlistate , Solo/química , Especificidade da Espécie
18.
Environ Pollut ; 213: 922-931, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27049789

RESUMO

Pharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment.


Assuntos
Carbamazepina/metabolismo , Diclofenaco/metabolismo , Fluoxetina/metabolismo , Lactonas/metabolismo , Oligoquetos/metabolismo , Preparações Farmacêuticas/metabolismo , Solo/química , Animais , Carbamazepina/farmacologia , Diclofenaco/farmacologia , Fluoxetina/farmacologia , Concentração de Íons de Hidrogênio , Lactonas/farmacologia , Oligoquetos/efeitos dos fármacos , Orlistate , Poluentes do Solo/metabolismo , Poluentes do Solo/farmacologia , Água/química
19.
Environ Sci Technol ; 49(20): 12509-18, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26418514

RESUMO

The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications.


Assuntos
Carbamazepina/farmacocinética , Cucurbita/efeitos dos fármacos , Poluentes do Solo/farmacocinética , Verapamil/farmacocinética , Biomassa , Carbamazepina/toxicidade , Cucurbita/crescimento & desenvolvimento , Cucurbita/metabolismo , Relação Dose-Resposta a Droga , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes do Solo/análise , Verapamil/toxicidade
20.
Environ Sci Technol ; 48(22): 13497-503, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25333567

RESUMO

Current guidelines for determining bioconcentration factors (BCF) and uptake and depuration rate constants require labor intensive studies with large numbers of organisms. A minimized approach has recently been proposed for fish BCF studies but its applicability to other taxonomic groups is unknown. In this study, we therefore evaluate the use of the minimized approach for estimating BCF and uptake and depuration rate constants for chemicals in aquatic and terrestrial invertebrates. Data from a range of previous BCF studies were resampled to calculate BCFs and rate constants using the minimized method. The resulting values were then compared to values obtained using full study designs. Results demonstrated a good correlation for uptake rate constants, a poor correlation for depuration rate constants and a very good correlation between the BCFs obtained using the traditional and minimized approach for a variety of organic compounds. The minimized approach therefore has merit in deriving bioconcentration factors and uptake rate constants but may not be appropriate for deriving depuration rate constants for use in, for example, toxico-kinetic toxico-dynamic modeling. The approach uses up to 70% fewer organisms, requires less labor and has lower analytical costs. The minimized design therefore could be a valuable approach for running large multifactorial studies to assess bioconcentration of the plethora of chemicals that occur in the environment into the many taxonomic groups that occur in the environment. The approach should therefore help in accelerating the development of our understanding of factors and processes affecting uptake of chemicals into organisms in the environment.


Assuntos
Peixes/metabolismo , Invertebrados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA