Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Materials (Basel) ; 16(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770296

RESUMO

BaTiO3 (BTO) nanoparticles produced by wet chemistry methods were embedded in several types of flexible materials in order to fabricate flexible electronic devices. Starting from the produced nanoparticle dielectric properties, flexible material dielectric properties were tested for high electromagnetic frequencies (30 GHz-2 THz) using time domain spectroscopy. Dielectric performances of the different materials obtained with variable nanoparticle concentrations up to 40 wt.%, embedded in, gelatin, epoxy, and styrene-butadiene were compared at several working temperatures between 0 °C and 120 °C. Beside the general trend of ε' decrease with temperature and loses increase with the operating frequency, we were able to identify few matrix dependent optimal nanoparticle concentrations. The best composite performances were achieved by the BTO-SBS matrix, with filler concentration of 2 wt.%, where the losses have been of 1.5%, followed by BTO-gelatin matrix, with filler concentration of 40 wt.%, with higher losses percent of almost 10% for THz frequencies.

2.
Nanoscale ; 7(30): 12955-69, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26168304

RESUMO

The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field.

3.
Bioconjug Chem ; 24(9): 1562-9, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23909594

RESUMO

The surface of superparamagnetic silica coated iron oxide (Fe3O4@SiO2) nanoparticles was functionalized with a disulfide bond linked N-hydroxysuccinimidyl (NHS) ester group in order to develop a method for labeling primary amines in peptides/proteins. The nanoparticle labeled proteins/peptides formed after NHS ester reaction with the primary amine groups were isolated using a magnet without any additional purification step. Nanoparticle moieties conjugated to peptides/proteins were then trimmed by cleavage at the disulfide linker with a reducing agent. The labeled peptides were analyzed by LC-MS/MS to determine their sequences and the sites of NHS ester labeling. This novel approach allowed characterization of lysine residues on the solvent accessible surface of native bovine serum albumin. Low cost, rapid magnetic separation, and specificity toward primary amine groups make NHS ester coated Fe3O4@SiO2 nanoparticles a potential labeling probe to study proteins on living cell surfaces.


Assuntos
Aminas/análise , Nanopartículas de Magnetita/química , Peptídeos/química , Soroalbumina Bovina/química , Succinimidas/química , Animais , Bovinos , Cromatografia Líquida/métodos , Dissulfetos/química , Modelos Moleculares , Dióxido de Silício/química , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos
4.
Langmuir ; 27(6): 2271-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21284390

RESUMO

We report a simple one-pot strategy to prepare surface-function-alized, water-dispersible iron oxide nanoparticles. Small organic molecules that have desired functional groups such as amines, carboxylics, and thiols are chosen as capping agents and are injected into the reaction medium at the end of the synthesis. A diversity of functionalities are effectively introduced onto the surface of the nanoparticles with a minimal consumption of solvents and chemical resources by simply switching the capping ligand to form the ligand shell. The resulting nanocrystals are quasi-spherical and narrowly size-distributed. Energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy studies suggest a successful surface modification of iron oxide nanoparticles with selected functionalities. The colloidal stabilities are characterized by dynamic light scattering and zeta potential measurements. The results imply that functionalized nanoparticles are very stable and mostly present as individual units in buffer solutions. The pedant functional groups of the capping ligand molecules are very reactive, and their availabilities are investigated by covalently linking fluorescent dyes to the nanoparticles through the cross-linking of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The quenched quantum yield and shortened lifetime of the dyes strongly indicate a direct bonding between the functional group of the nanoparticles and the fluorescent molecules.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Tamanho da Partícula , Propriedades de Superfície , Água/química
5.
Ultrason Sonochem ; 15(5): 891-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18313969

RESUMO

Treatment of preformed magnetite nanoparticles with ultrasound in aqueous media with dissolved tetrachloroauric acid resulted in the formation of gold-magnetite nanocomposite materials. These materials maintained the morphology of the original magnetite particles. The loading of gold particles could be controlled by adjusting experimental parameters, including the addition of small amounts of solvent modifiers such as methanol, diethylene glycol, and oleic acid. The nanocomposite materials were magnetic and exhibited optical properties similar to pure gold nanoparticles.

6.
J Magn Reson Imaging ; 26(6): 1634-41, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17968941

RESUMO

PURPOSE: To evaluate the effect of coating thickness on the relaxivity of iron oxide nanoparticles. MATERIALS AND METHODS: Monocrystalline superparamagnetic iron oxide nanoparticles (MIONs), coated with a polyethylene glycol (PEG)-modified, phospholipid micelle coating, with different PEG molecular weights, were prepared. The particle diameters were measured with dynamic light scattering (DLS) and electron microscopy (EM). The R1 and R2 of MIONs were measured using a bench-top nuclear magnetic resonance (NMR) relaxometer. pH was varied for some measurements. Monte Carlo simulations of proton movement in a field with nanometer-sized magnetic inhomogeneities were performed. RESULTS: Increasing the molecular weight of the PEG portion of the micelle coating increased overall particle diameter. As coating thickness increases, the R2 decreases and the R1 increases. Changing pH has no effect on relaxivity. The Monte Carlo simulations suggest that the effect of coating size on R2 relaxivity is determined by two competing factors: the physical exclusion of protons from the magnetic field and the residence time for protons within the coating zone. CONCLUSION: Coating thickness can significantly impact the R2, and the R2/R1 ratio, of a MION contrast agent. An understanding of the relationship between coating properties and changes in relaxivity is critical for designing magnetic nanoparticle probes for molecular imaging applications using MRI.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética , Nanopartículas/química , Simulação por Computador , Concentração de Íons de Hidrogênio , Micelas , Método de Monte Carlo , Fosfolipídeos/química , Polietilenoglicóis/química , Propriedades de Superfície
7.
Nanomedicine ; 1(3): 233-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17292085

RESUMO

Magnetic, hollow silica nanocomposites (MHSNC), including nanospheres and nanotubes, have been successfully synthesized using a coating of Fe(3)O(4) magnetic nanoparticles (NPs) ( approximately 10 nm) and silica on nanosized spherical and nanoneedle-like calcium carbonate (CaCO(3)) surfaces under alkaline conditions. The nanosized CaCO(3) surfaces were used as nanotemplates, and tetraethoxysilane and magnetic NPs were used as precursors. The as-synthesized MHSNC were immersed in an acidic solution to remove the CaCO(3), forming magnetic, hollow silica nanospheres and nanotubes. The MHSNC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray powder diffraction, and superconducting quantum interference device (SQUID) magnetometer. SEM and TEM results showed that a smooth surface of MHSNC and a thin layer of silica ( approximately 10 nm) embedded with the magnetic NPs were successfully formed, and that the CaCO(3) nanotemplates appeared to be dissolved. SQUID measurement demonstrated that magnetization of MHSNC was dependent on temperature, exhibiting superparamagnetism. The MHSNC were immersed in ibuprofen solution. The amount of the loaded drug was determined to be 12 wt% for nanospheres, and 8 wt% for nanotubes by UV measurement, respectively. Drug-loaded MHSNC have potential applications in nanomedicine.


Assuntos
Magnetismo , Nanocompostos/química , Nanomedicina/instrumentação , Dióxido de Silício/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura , Nanomedicina/métodos , Temperatura , Difração de Raios X
8.
Inorg Chem ; 41(23): 6137-46, 2002 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-12425644

RESUMO

Study of the reactivity of 3d transition metal cations in diethylene glycol solutions revealed several key features that made it possible to develop a new method for synthesis of the nanocrystalline transition metal ferrites. The 3-7 nm particles of [MFe2O4]n[O2CR]m, where M = Mn, Fe, Co, Ni, and Zn, ligated on their surface with long-chain carboxylate anions, have been obtained in an isolated yield of 75-90%. The key features are the following. Complexation of the first-row transition metal cations with diethylene glycol at a presence of alkaline hydroxide is sufficient to enable control over the rate of their hydrolysis. The reaction of hydrolysis leads to the formation of metal oxide nanocrystals in colloidal solution. The nanoparticles growth is terminated by an added long-chain carboxylic acid, which binds to their surface and acts as a capping ligand. The isolated nanocrystalline powders are stable against agglomeration and highly soluble in nonpolar organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA