RESUMO
Introduction: the need to correctly measure and follow body composition as a simple disease prevention metric is important, especially where the healthcare infrastructures are poor. The variety of inexpensive devices available for this purpose is large. However, it is imperative to validate them in relation to the gold standard method, dual-energy absorptiometry X-ray (DEXA). In low-income countries, DEXA measurements aren't available. Thus, easy-to-use, and accurate devices are indispensable. In Guinea-Bissau, two relatively inexpensive, bioelectrical impedance scales, simple to use, are available. However, their accuracy has not been assessed in this setting. The study compares the level of agreement in measurements between, the Tanita® BC-545 and the Omron Karada Scan BF511, in adult volunteers. Methods: volunteers grouped for athletic and sports modalities at stadiums and sports facilities in Bissau were included. All anthropometric measurements were done in both devices. For statistical analysis, we created Bland-Altman plots to assess their level of agreement. Results: the study included 274 participants, mean age 27.4 years, 214 (78%) males. For body fat, the median between the Omron and Tanita measures was 2.6 and the interquartile was 5.2. The Omron measured median body mass index, -0.3 kg/m2 and 0.8 kg/m2 of interquartile below that of the Tanita. For visceral fat, the Omron measured 1% of median and an interquartile of 2% above that of the Tanita. For skeletal muscle, the Omron median measured 11.3% and 11.4 % of interquartile below that of the Tanita. The intra-class correlation coefficient (ICC) for body fat (BF), body mass index (BMI) and skeletal muscle (SM) was 0.99 and for VF it was 1.00 on both devices. Conclusion: the results indicate a good level of agreement between the two devices. In resource-limited settings, the Omron is likely a reasonable substitute for more expensive body composition devices.
Assuntos
Composição Corporal , Impedância Elétrica , Humanos , Composição Corporal/fisiologia , Masculino , Adulto , Feminino , Reprodutibilidade dos Testes , Guiné-Bissau , Adulto Jovem , Antropometria/métodos , Absorciometria de Fóton , Tecido Adiposo , Pessoa de Meia-Idade , Adolescente , Estudos TransversaisRESUMO
T cells play critical roles in adipose tissue (AT) inflammation. The role of CD20+T cell in AT dysfunction and their contributing to insulin resistance (IR) and type 2 diabetes progression, is not known. The aim was to characterize CD20+T cells in omental (OAT), subcutaneous (SAT) and peripheral blood (PB) from subjects with obesity (OB, n = 42), by flow cytometry. Eight subjects were evaluated before (T1) and 12 months post (T2) bariatric/metabolic surgery (BMS). PB from subjects without obesity (nOB, n = 12) was also collected. Higher percentage of CD20+T cells was observed in OAT, compared to PB or SAT, in OB-T1. CD20 expression by PB CD4+T cells was inversely correlated with adiposity markers, while follicular-like CD20+T cells were positively correlated with impaired glucose tolerance (increased HbA1c). Notably, among OB-T1, IR establishment was marked by a lower percentage and absolute number of PB CD20+T cells, compared nOB. Obesity was associated with higher percentage of activated CD20+T cells; however, OAT-infiltrated CD20+T cells from OB-T1 with diabetes displayed the lowest activation. CD20+T cells infiltrating OAT from OB-T1 displayed a phenotype towards IFN-γ-producing Th1 and Tc1 cells. After BMS, the percentage of PB CD4+CD20+T cells increased, with reduced Th1 and increased Th17 phenotype. Whereas in OAT the percentage of CD20+T cells with Th1/17 and Tc1/17 phenotypes increased. Interestingly, OAT from OB pre/post BMS maintained higher frequency of effector memory CD20+T cells. In conclusion, CD20+T cells may play a prominent role in obesity-related AT inflammation.
Assuntos
Tecido Adiposo , Antígenos CD20 , Cirurgia Bariátrica , Obesidade , Humanos , Masculino , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/cirurgia , Feminino , Pessoa de Meia-Idade , Antígenos CD20/metabolismo , Adulto , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunofenotipagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , BiomarcadoresRESUMO
BACKGROUND: Viral respiratory infections may precipitate type 1 diabetes (T1D). A possible association between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, and the incidence of T1D is being determined. This study was carried out using Portuguese registries, aiming at examining temporal trends between COVID-19 and T1D. METHODS: Hospital data, comparing the incidence before and during the COVID-19 pandemic, from children and young adults diagnosed with new-onset T1D, was acquired beginning in 2017 and until the end of 2022. Data was obtained from nine different Portuguese hospital units. The impact of the COVID-19 pandemic, beginning in March 2020, was assessed comparing the annual numbers of new-onset T1D cases. The annual median levels of glucose, glycated hemoglobin (HbA1c) and fasting C-peptide at T1D diagnosis were compared. The annual number of diabetic ketoacidosis (DKA) episodes among new T1D cases was also assessed at two centers. RESULTS: In total, data from 574 newly diagnosed T1D patients was analyzed, including 530 (92.3%) children. The mean ages for child and adult patients were 9.1 (SD 4.4) and 32.8 (SD 13.6) years, respectively. 57.8% (331/573) were male, one patient had unknown sex. The overall median (25-75 percentiles) levels of glucose, HbA1c and fasting C-peptide at diagnosis were 454 mg/dL (356-568), 11.8% (10.1-13.4) and 0.50 µg/L (0.30-0.79), respectively. DKA at T1D diagnosis was present in 48.4% (76/157). For eight centers with complete 2018 to 2021 data (all calendar months), no overall significant increase in T1D cases was observed during the COVID-19 pandemic, i.e. 90 cases in 2018, 90 cases in 2019, 112 in 2020 and 100 in 2021 (P for trend = 0.36). Two of the centers, Faro (CHUA) and Dona Estefânia (CHULC) hospitals, did however see an increase in T1D from 2019 to 2020. No significant changes in glucose (P = 0.32), HbA1c (P = 0.68), fasting C-peptide (P = 0.20) or DKA frequency (P = 0.68) at the time of T1D diagnosis were observed over the entire study period. CONCLUSION: The T1D incidence did not increase significantly, when comparing the years before and during the COVID-19 pandemic, nor did key metabolic parameters or number of DKA episodes change.
Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Sistema de Registros , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Masculino , Portugal/epidemiologia , Feminino , Incidência , Criança , Adulto , Adolescente , Adulto Jovem , Pré-Escolar , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , SARS-CoV-2 , Cetoacidose Diabética/epidemiologia , Glicemia/análise , Glicemia/metabolismoRESUMO
PURPOSE: We investigated the effects of a 16-wk combined exercise training on body composition, and metabolic and inflammatory markers in sedentary middle-aged workers. We also assessed whether alterations in metabolic markers were associated with changes in health-related outcomes. METHODS: This randomized controlled trial involved 46 participants randomly allocated into control and exercise groups. The exercise group performed 16-wk combined aerobic and resistance training for 75 min per session, 3 times a week. Fasting blood samples were collected at baseline and after 16-wk intervention to determine lipid profile, and metabolic and inflammatory markers as primary outcomes. RESULTS: A total of 36 participants completed the intervention (53.70 ± 6.92 yr old; n = 18 in each group). Waist circumference (interaction effect: F = 7.423, P = 0.002), fat mass (interaction effect: F = 5.070, P = 0.011), and muscle mass (interaction effect: F = 5.420, P = 0.007) were improved in the exercise group compared with the control group. Fasting glucose increased after the 16-wk follow-up (time effect: F = 73.253, P < 0.001), without an intergroup difference. Insulin levels were greater in the control compared with exercise group (group effect: F = 6.509, P = 0.015). The control group tended to increase the homeostatic model assessment of insulin resistance index (interaction effect: F = 3.493, P = 0.070) and to decrease the QUICKI index (interaction effect: F = 3.364, P = 0.075) to a greater extent compared with the exercise group. Exercise group reduced leptin (interaction effect: F = 11.175, P = 0.002) and adiponectin (interaction effect: F = 4.437, P = 0.043) concentrations in a greater magnitude than the control group. Interleukin (IL)-6 (time effect: F = 17.767, P < 0.001) and tumor necrosis factor α (time effect: F = 9.781, P = 0.004) concentrations decreased after the intervention, without an intergroup difference. IL-17A levels increased in the control compared with exercise group (interaction effect: F = 5.010, P = 0.033). Effects on adiponectin, IL-6, and IL-17A levels seem to depend on baseline body mass index, age, and sex. Percentage changes in leptin correlated positively with changes in homeostatic model assessment of insulin resistance index in the exercise ( r = 0.565, P = 0.015) and control ( r = 0.670, P = 0.002) groups. CONCLUSIONS: A combined training program can be an effective strategy to improve body composition and inflammatory markers and prevent marked reductions in insulin sensitivity among middle-aged workers.
Assuntos
Biomarcadores , Glicemia , Composição Corporal , Insulina , Leptina , Treinamento Resistido , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Feminino , Leptina/sangue , Insulina/sangue , Glicemia/metabolismo , Exercício Físico/fisiologia , Adiponectina/sangue , Circunferência da Cintura , Interleucina-6/sangue , Comportamento Sedentário , Fator de Necrose Tumoral alfa/sangue , Resistência à Insulina , Inflamação/sangue , Lipídeos/sangueRESUMO
CD20+ T cells constitute a small subset of T cells. These are found among CD4+, CD8+, CD4+CD8+, CD4-CD8- T, and TCRγδ+ T cells, and have been poorly characterized. The aim of this study was to characterize peripheral blood (PB) CD20+ T cells and compare them to their PB CD20- T cell counterparts. PB from 17 healthy individuals was collected. The distribution of CD20+ T cells among maturation-associated T cells compartments (naïve, central memory, transitional memory, effector memory, and effector T cells), their polarization, activation status, and expression of immune-regulatory proteins were evaluated by flow cytometry. Their function was also assessed, by measuring IFN-γ, TNF-α, and IL-17 production. Compared with CD20- T cells, CD20+ T cells represent a higher proportion of transitional memory cells. Furthermore, CD20+ T cells display a proinflammatory phenotype, characterized by the expansion of Th1, Th1/17, and Tc1 cell subsets , associated to a high expression of activation (CD25) and exhaustion (PD-1) markers. In addition, the simultaneous production of the proinflammatory cytokines IFN-γ, TNF-α, and IL-17 was also detected in CD4+CD20+ T cells. Our results show that CD20+ T cells are phenotypically and functionally different from CD20- T cells, suggesting that these cells are a distinct subset of T cells.
Assuntos
Antígenos CD20 , Citometria de Fluxo , Subpopulações de Linfócitos T , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos CD20/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Memória Imunológica/imunologia , Interferon gama , Interleucina-17/sangue , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Células T de Memória/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfaRESUMO
Low-grade inflammation is closely linked to obesity and obesity-related comorbidities; therefore, immune cells have become an important topic in obesity research. Here, we performed a deep phenotypic characterization of circulating T cells in people with obesity, using flow cytometry. Forty-one individuals with obesity (OB) and clinical criteria for bariatric surgery were enrolled in this study. We identified and quantified 44 different circulating T cell subsets and assessed their activation status and the expression of immune-checkpoint molecules, immediately before (T1) and 7-18 months after (T2) the bariatric surgery. Twelve age- and sex-matched healthy individuals (nOB) were also recruited. The OB participants showed higher leukocyte counts and a higher percentage of neutrophils. The percentage of circulating Th1 cells were negatively correlated to HbA1c and insulin levels. OB Th1 cells displayed a higher activation status and lower PD-1 expression. The percentage of Th17 and Th1/17 cells were increased in OB, whereas the CD4+ Tregs' percentage was decreased. Interestingly, a higher proportion of OB CD4+ Tregs were polarized toward Th1- and Th1/17-like cells and expressed higher levels of CCR5. Bariatric surgery induced the recovery of CD4+ Treg cell levels and the expansion and activation of Tfh and B cells. Our results show alterations in the distribution and phenotype of circulating T cells from OB people, including activation markers and immune-checkpoint proteins, demonstrating that different metabolic profiles are associated to distinct immune profiles, and both are modulated by bariatric surgery.
Assuntos
Cirurgia Bariátrica , Células Th1 , Humanos , Linfócitos T Reguladores , Subpopulações de Linfócitos T , Obesidade/cirurgia , Obesidade/metabolismoRESUMO
Despite the known link between obesity and insulin resistance (IR) to chronic low-grade inflammation, new markers capable of early IR detection are needed. Immune cells are components of adipose tissue's (AT) stromal vascular fraction (SVF) that regulate AT homeostasis. The altered phenotype and function of AT-infiltrating immune cells may contribute to the development and maintenance of local AT inflammation observed under obesity-induced IR conditions. Impaired AT-specific immunometabolic function may influence the whole organism. Therefore, AT-infiltrating immune cells may be important players in the development of obesity-related metabolic complications, such as type 2 diabetes mellitus (T2DM). B and T cells, particularly CD20+ T cells, play important roles in human pathology, such as autoimmune disease and cancer. However, the question remains as to whether CD20+ T cells have an important contribution to the development of obesity-related IR. While circulating CD20+ T cells are mostly of the central memory phenotype (i.e. antigen-experienced T cells with the ability to home to secondary lymphoid organs), tissues-infiltrated CD20+ T cells are predominantly of the effector memory phenotype (i.e. antigen-experienced T cells that preferentially infiltrate peripheral tissues). The latter produce pro-inflammatory cytokines, such as IFN-γ and IL-17, which play a role in obesity-related IR development. This review describes the CD20 molecule and its presence in both B and T cells, shedding light on its ontogeny and function, in health and disease, with emphasis on AT. The link between CD20+ T cell dysregulation, obesity, and IR development supports the role of CD20+ T cells as markers of adipose tissue dysmetabolism.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Neoplasias , Humanos , Autoimunidade , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Linfócitos T/metabolismo , Inflamação/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias/patologia , Resistência à Insulina/genéticaRESUMO
Obesity-related chronic low-grade inflammation may trigger insulin resistance and type 2 diabetes (T2D) development. Cells with regulatory phenotype have been shown to be reduced during obesity, especially CD4+ Treg cells. However, little is known about the CD8+ Treg cells. Therefore, we aim to characterize the CD8+ Treg cells in human peripheral blood and adipose tissue, specifically, to address the effect of obesity and insulin resistance in this regulatory immune cell population. A group of 42 participants with obesity (OB group) were recruited. Fourteen of them were evaluated pre- and post-bariatric surgery. A group of age- and sex-matched healthy volunteers (n = 12) was also recruited (nOB group). CD8+ Treg cell quantification and phenotype were evaluated by flow cytometry, in peripheral blood (PB), subcutaneous (SAT), and visceral adipose tissues (VAT). The OB group displayed a higher percentage of CD8+ Treg cells in PB, compared to the nOB. In addition, they were preferentially polarized into Tc1- and Tc1/17-like CD8+ Treg cells, compared to nOB. Moreover, SAT displayed the highest content of CD8+ Tregs infiltrated, compared to PB or VAT, while CD8+ Tregs infiltrating VAT displayed a higher percentage of cells with Tc1-like phenotype. Participants with pre-diabetes displayed a reduced percentage of TIM-3+CD8+ Tregs in circulation, and PD-1+CD8+ Tregs infiltrated in the VAT. An increase in the percentage of circulating Tc1-like CD8+ Treg cells expressing PD-1 was observed post-surgery. In conclusion, obesity induces significant alterations in CD8+ Treg cells, affecting their percentage and phenotype, as well as the expression of important immune regulatory molecules.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Linfócitos T Reguladores , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Receptor de Morte Celular Programada 1/metabolismo , Obesidade/metabolismo , Linfócitos T CD8-Positivos/metabolismoRESUMO
INTRODUCTION: Diabetes mellitus (DM) impairs wound healing. The aim was to determine whether DM influences mitochondrial respiration in wounded skin (WS) and non-wounded skin (NWS), in a pre-clinical wound healing model of streptozotocin (STZ)-induced diabetes. METHODS: Six weeks after diabetes induction, two wounds were created in the back of C57BL/J6 mice. Using high-resolution respirometry (HRR), oxygen flux was measured, in WS and NWS, using two substrate-uncoupler-inhibitor titration protocols, at baseline (day 0), day 3 and 10 post-wounding, in STZ-DM and non-diabetic (NDM) mice. Flux control ratios for the oxidative phosphorylation (OXPHOS) capacity were calculated. RESULTS: A significant increase in mitochondrial respiration was observed in STZ-DM skin compared to control skin at baseline. The OXPHOS capacity was decreased in WS under diabetes at day 3 post-wounding (inflammation phase). However, at day 10 post-wounding (remodeling phase), the OXPHOS capacity was higher in WS from STZ-DM compared to NDM mice, and compared to NWS from STZ-DM mice. A significant relative contribution of pyruvate, malate and glutamate (PMG) oxidation to the OXPHOS capacity was observed in WS compared to NWS from STZ-DM mice, at day 10, while the relative contribution of fatty acid oxidation to the OXPHOS capacity was higher in NWS. The OXPHOS capacity is altered in WS from STZ-DM compared to NDM mice across the healing process, and so is the substrate contribution in WS and NWS from STZ-DM mice, at each time point. CONCLUSION: HRR may be a sensitive tool to evaluate the underlying mechanisms of tissue repair during wound healing.
Assuntos
Diabetes Mellitus Experimental , Fosforilação Oxidativa , Camundongos , Animais , Diabetes Mellitus Experimental/metabolismo , Projetos Piloto , Camundongos Endogâmicos C57BL , Pele/metabolismoRESUMO
Diabetic foot ulcers (DFU) are one of the most frequent and debilitating complications of diabetes. DFU wound healing is a highly complex process, resulting in significant medical, economic and social challenges. Therefore, early identification of patients with a high-risk profile would be important to adequate treatment and more successful health outcomes. This study explores risk assessment profiles for DFU healing and healing prognosis, using machine learning predictive approaches and decision tree algorithms. Patients were evaluated at baseline (T0; N = 158) and 2 months later (T1; N = 108) on sociodemographic, clinical, biochemical and psychological variables. The performance evaluation of the models comprised F1-score, accuracy, precision and recall. Only profiles with F1-score >0.7 were selected for analysis. According to the two profiles generated for DFU healing, the most important predictive factors were illness representations on T1 IPQ-B (IPQ-B ≤ 9.5 and < 10.5) and the DFU duration (≤ 13 weeks). The two predictive models for DFU healing prognosis suggest that biochemical factors are the best predictors of a favorable healing prognosis, namely IL-6, microRNA-146a-5p and PECAM-1 at T0 and angiopoietin-2 at T1. Illness perception at T0 (IPQ-B ≤ 39.5) also emerged as a relevant predictor for healing prognosis. The results emphasize the importance of DFU duration, illness perception and biochemical markers as predictors of healing in chronic DFUs. Future research is needed to confirm and test the obtained predictive models.
Assuntos
Diabetes Mellitus , Pé Diabético , Úlcera do Pé , Humanos , Pé Diabético/terapia , Cicatrização , Prognóstico , Fatores de RiscoRESUMO
Objective: Diabetic foot ulcers (DFUs) are devastating complications of diabetes, responsible for a high number of amputations worldwide. Due to its impact on chronic inflammation, psychological distress may negatively impact the healing process. Thus, this study evaluated the influence of psychological distress on physiological indicators of healing prognosis and the potential of stress-reducing therapies for DFU healing. Approach: Patients with chronic DFU were recruited and assessed at enrollment and 2 months later. According to psychological scores at enrollment, participants were allocated into groups without (group 1) or with (group 3) psychological distress. Participants who reported clinical distress were then randomly allocated into a control (no stress-reducing intervention-group 4) or experimental (with stress-reducing interventions-group 5) group. Subsequently, indicators of healing prognosis were measured. Results: Groups 1 and 3 presented no differences in the Perfusion, Extent, Depth, Infection and Sensation score, glycated hemoglobin, or inflammatory and angiogenic markers. However, the immune cell ratio was increased by more than twofold in group 3, compared with group 1. Importantly, the expression of circulating microRNAs was significantly increased in group 3 (miR-21-5p, miR-155-5p, miR-146a-5p, and miR-221-3p [p < 0.05]), compared with group 1. Two months later, group 5 displayed a significant improvement in the Perceived Stress Scale and Hospital Anxiety and Depression Scale scores (p < 0.01), and the immune cell ratio was decreased by more than 2.5-fold. Innovation: This study helped to identify which variables and psychological interventions are more successful in promoting DFU healing. Conclusion: Psychological distress influenced clinical and physiological parameters, leading to compromised DFU healing and consequently underlining the potential of adjuvant stress-reducing approaches.
RESUMO
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management.
Assuntos
Anti-Infecciosos , Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/tratamento farmacológico , Materiais Biocompatíveis/uso terapêutico , Bandagens , Cicatrização , Anti-Infecciosos/uso terapêuticoRESUMO
Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.
Assuntos
Diabetes Mellitus Tipo 2 , Endotoxemia , Doenças Metabólicas , Humanos , Endotoxemia/complicações , Endotoxemia/metabolismo , Diabetes Mellitus Tipo 2/complicações , Disbiose/complicações , Disbiose/metabolismo , Disbiose/microbiologia , Inflamação , Doenças Metabólicas/metabolismo , Obesidade/complicações , Tecido AdiposoRESUMO
Diabetic foot ulcers (DFU) are one of the most serious and devastating complications of diabetes and account for a significant decrease in quality of life and costly healthcare expenses worldwide. This condition affects around 15% of diabetic patients and is one of the leading causes of lower limb amputations. DFUs generally present poor clinical outcomes, mainly due to the impaired healing process and the elevated risk of microbial infections which leads to tissue damage. Nowadays, antimicrobial resistance poses a rising threat to global health, thus hampering DFU treatment and care. Faced with this reality, it is pivotal to find greener and less environmentally impactful alternatives for fighting these resistant microbes. Antimicrobial peptides are small molecules that play a crucial role in the innate immune system of the host and can be found in nature. Some of these molecules have shown broad-spectrum antimicrobial properties and wound-healing activity, making them good potential therapeutic compounds to treat DFUs. This review aims to describe antimicrobial peptides derived from green, eco-friendly processes that can be used as potential therapeutic compounds to treat DFUs, thereby granting a better quality of life to patients and their families while protecting our fundamental bio-resources.
RESUMO
Dysfunction in key cellular organelles has been linked to diabetic complications. This study intended to investigate the alterations in the unfolded protein response (UPR), autophagy, and mitochondrial function, which are part of the endoplasmic reticulum (ER) stress response, in wound healing (WH) under diabetes conditions. WH mouse models were used to evaluate the UPR, autophagy, mitochondrial fusion, fission, and biogenesis as well as mitophagy in the skin of control and diabetic mice at baseline and 10 days after wounding. The autophagic flux in response to high-glucose conditions was also evaluated in keratinocyte and fibroblast cell cultures. WH was impaired in the diabetic mouse model, and we found that the UPR and autophagy pathways were activated in skin wounds of control mice and in the non-wounded skin of diabetic mice. Moreover, high-glucose conditions induced autophagy in the keratinocyte and fibroblast cell cultures. However, mitophagy did not change in the skin of diabetic mice or the wounded skin. In addition, mitochondrial fusion was activated in control but not in the skin wounds of diabetic mice, while mitochondrial biogenesis is downregulated in the skin of diabetic mice. In conclusion, the activation of the UPR, autophagy, and mitochondrial remodeling are crucial for a proper WH. These results suggest that the increase in ER stress and autophagy in the skin of diabetic mice at baseline significantly escalated to pathological levels after wounding, contributing to impaired WH in diabetes.
Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Estreptozocina , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Autofagia , GlucoseRESUMO
AIMS: The increasing prevalence of childhood obesity escalates the risk for related complications. Circulating microRNAs (miRNAs) have been suggested as good predictive markers of insulin resistance in those with obesity. The aim was to identify a circulating miRNA profile that reflects insulin resistance in prepubertal children with obesity. MATERIAL AND METHODS: Plasma miRNAs were measured in prepubertal children (n = 63, 5-9 years) using TaqMan Advanced miRNA Human Serum/Plasma plates and then were validated by RT-qPCR. Subjects were divided into normal weight (n = 20, NW) and overweight or obese (n = 43, OW/OB) groups according to their BMI z-scores. The OW/OB group was further subdivided into insulin sensitive or metabolically healthy obese (n = 26, MHO) and insulin resistant or metabolically unhealthy obese (n = 17, MUO) according to HOMA-IR. KEY FINDINGS: While no differences were observed in the fasting plasma glucose levels, serum insulin levels were significantly elevated in the OW/OB compared to the NW group. Of 188 screened miRNAs, eleven were differentially expressed between the NW and OW/OB groups. Validation confirmed increased circulating levels of miR-146a-5p and miR-18a-5p in the OW/OB group, which correlated with BMI z-score. Interestingly, miR-146a-5p was also correlated with HOMA-IR index. While only miR-18a-5p was upregulated in the OW/OB children, independently of their degree of insulin sensitivity, miR-146-5p, miR-423-3p and miR-152-3p were associated with insulin resistance. SIGNIFICANCE: The present study provides evidence of molecular alterations that occur early in life in prepubertal obesity. These alterations may potentially be crucial for targeted prevention or prompt precision therapeutic development and subsequent interventions.
Assuntos
MicroRNA Circulante , Resistência à Insulina , MicroRNAs , Obesidade Infantil , Humanos , Criança , Resistência à Insulina/genética , MicroRNA Circulante/genética , Obesidade Infantil/genética , Obesidade Infantil/epidemiologia , Insulina , MicroRNAs/genética , Índice de Massa CorporalRESUMO
This study aimed to analyze the effects of a combined training (CT) program performed during the first national lockdown due to the COVID-19 pandemic on body composition, metabolic profile, quality of life and stress in sedentary workers, and examines whether changes in the metabolic profile are associated with changes in health-related outcomes which are modifiable by exercise. We evaluated 31 sedentary workers (48.26 ± 7.89 years old). Participants were randomly assigned to a CT group (i.e., performed 16 weeks of exercise) or to a non-exercise control group. The CT program consisted of 16-week of resistance and aerobic exercise. Body composition, glycemic and lipidic profiles, cardiorespiratory fitness (CRF), health-related quality of life and stress levels were assessed pre- and post-intervention. After the intervention period, the CT group demonstrated significantly lower waist and hip circumference (p < 0.05) values than the control group. The control group significantly increased the fasting glucose and HOMA-IR after 16 weeks follow-up (+4.74 mg/dL, p = 0.029; and +0.41 units, p = 0.010, respectively), whiles no significant changes were observed in the CT group in the same parameters (+3.33 mg/dL, p = 0.176; and +0.04 units, p = 0.628, respectively). No changes were observed in the lipid profile for either group (p > 0.05). A significant positive relationship was detected between the change in BMI with the changes in insulin and HOMA-IR (r = 0.643, p = 0.024; and r = 0.605, p = 0.037, respectively). In addition, the changes in CRF were negatively associated with the changes in total cholesterol (r = -0.578, p = 0.049). We observed differences between groups on perceived stress levels and physical, psychological, and environmental domains of quality of life, with the CT group showing better results. Moreover, the CT group improved perceived life satisfaction (+3.17 points, p = 0.038). The findings of the present study suggest that the participants who remained physically active during the first pandemic-related lockdown were able to mitigate the deleterious effects associated with a sedentary lifestyle.
Assuntos
COVID-19 , Qualidade de Vida , Humanos , Adulto , Pessoa de Meia-Idade , Pandemias , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Exercício FísicoRESUMO
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Assuntos
Diabetes Mellitus , Pé Diabético , Anti-Inflamatórios , Antioxidantes , Biliverdina/metabolismo , Biliverdina/uso terapêutico , Monóxido de Carbono/metabolismo , Pé Diabético/tratamento farmacológico , Heme/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Ferro/metabolismoRESUMO
Introduction: Thoracic perivascular adipose tissue (tPVAT) has a phenotype resembling brown AT. Dysfunctional tPVAT appears to be linked to vascular dysfunction. Methods: We evaluated uncoupling protein 1 (UCP1) expression by Western blot, oxidative stress by measuring lipid peroxidation, the antioxidant capacity by HPLC and spectrophotometry, and mitochondrial respiration by high-resolution respirometry (HRR) in tPVAT, compared to inguinal white AT (iWAT), obtained from non-diabetic (NDM) and streptozocin-induced diabetic (STZ-DM) mice. Mitochondrial respiration was assessed by HRR using protocol 1: complex I and II oxidative phosphorylation (OXPHOS) and protocol 2: fatty acid oxidation (FAO) OXPHOS. OXPHOS capacity in tPVAT was also evaluated after UCP1 inhibition by guanosine 5'-diphosphate (GDP). Results: UCP1 expression was higher in tPVAT when compared with iWAT in both NDM and STZ-DM mice. The malondialdehyde concentration was elevated in tPVAT from STZ-DM compared to NDM mice. Glutathione peroxidase and reductase activities, as well as reduced glutathione levels, were not different between tPVAT from NDM and STZ-DM mice but were lower compared to iWAT of STZ-DM mice. OXPHOS capacity of tPVAT was significantly decreased after UCP1 inhibition by GDP in protocol 1. While there were no differences in the OXPHOS capacity between NDM and STZ-DM mice in protocol 1, it was increased in STZ-DM compared to NDM mice in protocol 2. Moreover, complex II- and FAO-linked respiration were elevated in STZ-DM mice under UCP1 inhibition. Conclusions: Pharmacological therapies could be targeted to modulate UCP1 activity with a significant impact in the uncoupling of mitochondrial bioenergetics in tPVAT.
Assuntos
Diabetes Mellitus Experimental , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Respiração , Proteína Desacopladora 1/metabolismoRESUMO
Diabetic foot ulcer (DFU) is the leading cause of lower-limb amputations, with a significant impact on patients, families, and society. Since DFU medical treatments represent a major socioeconomic burden, cost-effective interventions are needed. This trial aims to assess the effectiveness of a muscle relaxation intervention compared to a hypnosis intervention versus active and passive control groups on DFU healing, physiological indicators of healing prognosis, and quality of life (QoL) in clinically distressed patients with a chronic DFU. A multicenter, randomized controlled trial with three assessment moments (baseline, two months post-intervention, and four months follow-up) will be conducted. Approximately 170 patients will be randomized and allocated to either treatment or control groups. Primary outcomes will be DFU healing, physiological indicators of healing prognosis, and QoL. Secondary outcomes will include perceived stress, psychological morbidity, and DFU representations. The efficacy of sessions on DFU healing will be qualitatively assessed in 12 patients allocated to the treatment and active control groups, as well as their family caregivers. This study will provide evidence regarding the effectiveness of two psychological interventions for the DFU healing process and the QoL of patients, with direct clinical relevance regarding DFU treatment and recurrence.