Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 68: 126837, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34385034

RESUMO

BACKGROUND: X ray Fluorescence has been essayed as a suitable technique for the elemental quantification of trace element in human tissues, namely comparison of normal and cancerous tissue. However, accurate results depend on a robust quantification approach, namely correct evaluation of the samples' dark matrix. METHODS: In order to determine the most suitable dark matrix composition for the quantification of such samples using the Fundamental Parameter approach, we have measured several Certified Reference Materials and essayed different dark matrix compositions to achieve the most accurate results. The resulting dark matrix was then applied to normal and tumor ovarian and prostate tissue samples, and the obtained results were compared with the ones obtained with a comparative method using external standard calibration curves. RESULTS: Using a dark matrix composed of 10 % - H, 22 % - C, 3 % - N and 60 % - O yielded the best compromise in accuracy for the light and heavy elements. For the reduced sample size and conditions of this study, for both organs, the concentrations of transition metals decrease in tumor tissues, while the concentration of lighter elements, P and Cl, increases. On the other hand, there are elements that showed different behavior between the two types of tissue, namely Zn and S, that increase in prostate tumor tissue and decrease in ovarian tissue. CONCLUSION: An increase in precision was one of the improvements found with the newly developed method, as the FP-approach contemplates matrix effects and the influence of other elements in the analytes' quantification. Additionally, the determined dark matrix can be employed in any tissue analysis application by means of EDXRF.


Assuntos
Neoplasias , Oligoelementos , Calibragem , Feminino , Humanos , Masculino , Ovário , Espectrometria por Raios X , Oligoelementos/análise , Raios X
2.
Arch Biochem Biophys ; 704: 108858, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798534

RESUMO

Success rates in drug discovery are extremely low, and the imbalance between new drugs entering clinical research and their approval is steadily widening. Among the causes of the failure of new therapeutic agents are the lack of safety and insufficient efficacy. On the other hand, timely disease diagnosis may enable an early management of the disease, generally leading to better and less costly outcomes. Several strategies have been explored to overcome the barriers for drug development and facilitate diagnosis. Using lipid membranes as platforms for drug delivery or as biosensors are promising strategies, due to their biocompatibility and unique physicochemical properties. We examine some of the lipid membrane-based strategies for drug delivery and diagnostics, including their advantages and shortcomings. Regarding synthetic lipid membrane-based strategies for drug delivery, liposomes are the archetypic example of a successful approach, already with a long period of well-succeeded clinical application. The use of lipid membrane-based structures from biological sources as drug carriers, currently under clinical evaluation, is also discussed. These biomimetic strategies can enhance the in vivo lifetime of drug and delivery system by avoiding fast clearance, consequently increasing their therapeutic window. The strategies under development using lipid membranes for diagnostic purposes are also reviewed.


Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais , Lipídeos de Membrana , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Humanos , Lipossomos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/uso terapêutico
3.
Front Chem ; 6: 237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988578

RESUMO

Over the years, the scientific importance of nanoparticles for biomedical applications has increased. The high stability and biocompatibility, together with the low toxicity of the nanoparticles developed lead to their use as targeted drug delivery systems, bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm to 1 µm, as well as their optical properties, allow them to be studied using microscopy and spectroscopy techniques. In order to be effectively used, the physicochemical properties of nanoparticle formulations need to be taken into account, namely, particle size, surface charge distribution, surface derivatization and/or loading capacity, and related interactions. These properties need to be optimized considering the final nanoparticle intended biodistribution and target. In this review, we cover light scattering based techniques, namely dynamic light scattering and zeta-potential, used for the physicochemical characterization of nanoparticles. Dynamic light scattering is used to measure nanoparticles size, but also to evaluate their stability over time in suspension, at different pH and temperature conditions. Zeta-potential is used to characterize nanoparticles surface charge, obtaining information about their stability and surface interaction with other molecules. In this review, we focus on nanoparticle characterization and application in infection, cancer and cardiovascular diseases.

4.
Antonie Van Leeuwenhoek ; 100(3): 341-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21614495

RESUMO

A novel yeast species within the Metschnikowiaceae is described based on a strain from the sugarcane (Saccharum sp.) rhizoplane of an organically managed farm in Rio de Janeiro, Brazil. The D1/D2 domain of the large subunit ribosomal RNA gene sequence analysis showed that the closest related species were Candida tsuchiyae with 86.2% and Candida thailandica with 86.7% of sequence identity. All three are anamorphs in the Clavispora opuntiae clade. The name Candida middelhoveniana sp. nov. is proposed to accommodate this highly divergent organism with the type strain Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (IMUFRJ) 51965(T) (=Centraalbureau voor Schimmelcultures (CBS) 12306(T), Universidade Federal de Minas Gerais (UFMG)-70(T), DBVPG 8031(T)) and the GenBank/EMBL/DDBJ accession number for the D1/D2 domain LSU rDNA sequence is FN428871. The Mycobank deposit number is MB 519801.


Assuntos
Candida/classificação , Candida/isolamento & purificação , Saccharum/microbiologia , Microbiologia do Solo , Brasil , Candida/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Agricultura Orgânica , Filogenia , Saccharum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA