RESUMO
BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a myopathy characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). The assessment of DNA methylation at two regions (DUX4-PAS and DR1) of D4Z4 locus proved to be an effective method to detect epigenetic signatures compatible with FSHD. The present study aims at validating the employment of this method into clinical practice and improving the protocol by refining the classification thresholds of 4qA/4qA patients. To this purpose, 218 subjects with clinical suspicion of FSHD collected in 2022-2023 were analyzed. Each participant underwent in parallel the traditional FSHD molecular testing (D4Z4 sizing) and the proposed methylation assay. The results provided by both analyses were compared to evaluate the concordance and calculate the performance metrics of the methylation test. RESULTS: Among the 218 subjects, the 4q variant type distribution was 54% 4qA/4qA, 43% 4qA/4qB and 3% 4qB/4qB. The methylation analysis was performed only on carriers of at least one 4qA allele. After refining the classification threshold, the test reached the following performance metrics: sensitivity = 0.90, specificity = 1.00 and accuracy = 0.93. These results confirmed the effectiveness of the methylation assay in identifying patients with genetic signature compatible with FSHD1 and FSHD2 based on their DUX4-PAS and DR1 profile, respectively. The methylation data were also evaluated with respect to the clinical information. CONCLUSIONS: The study confirmed the ability of the method to accurately identify methylation profiles compatible with FSHD genetic signatures considering the 4q genotype. Moreover, the test allows the detection of hypomethylated profiles in asymptomatic patients, suggesting its potential application in identifying preclinical conditions in patients with positive family history and FSHD genetic signatures. Furthermore, the present work emphasizes the importance of interpreting methylation profiles considering the patients' clinical data.
Assuntos
Cromossomos Humanos Par 4 , Metilação de DNA , Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Metilação de DNA/genética , Masculino , Feminino , Cromossomos Humanos Par 4/genética , Adulto , Pessoa de Meia-Idade , Epigênese Genética/genética , Proteínas de Homeodomínio/genética , Idoso , Adulto JovemRESUMO
Bi-allelic pathogenic variants in GRID2 have been initially associated to an autosomal recessive form of spinocerebellar ataxia, namely SCAR18. Subsequently, few monoallelic cases have been described. Here we present a new subject harboring a novel de novo heterozygous GRID2 missense variant presenting with progressive ataxia together with cerebellar atrophy and, for the first time, alpha-fetoprotein (AFP) elevation. We retrospectively collected data of the patient followed at our clinic. Genetic analysis was performed through clinical exome sequencing with an in-house in-silico ataxia-related genes panel. Variant effect prediction was performed through in silico modeling. The patient had normal psychomotor development except for mild fine and gross motor impairment. In adolescence, he started presenting dysarthria and progressive ataxia. Blood tests showed significant AFP elevation. Brain MRI showed cerebellar atrophy mainly involving the vermis. The novel de novo heterozygous GRID2 (c.1954C>A; p.Leu652Ile) missense variant was disclosed. This variant is located within a highly conserved site with low tolerance to variation and it is predicted to cause protein structure destabilization. GRID2 expression appears to be influenced by other genes related with ataxia and AFP elevation, like ATM and APTX, suggesting a possible shared mechanism. This additional patient increases the scarce literature and genotypic spectrum of the GRID2-related ataxia and evidences a fairly homogeneous phenotype of ataxia with oculomotor abnormalities for the autosomal-dominant form. Alfa-fetoprotein elevation is a novel finding in this condition and this data must be confirmed in larger case-series to definitively state that GRID2-related ataxia can be included among ataxias with AFP increase.
RESUMO
BACKGROUND: Autosomal-dominant spinocerebellar ataxia (ADCA) due to intronic GAA repeat expansion in FGF14 (SCA27B) is a recent, relatively common form of late-onset ataxia. OBJECTIVE: Here, we aimed to: (1) investigate the relative frequency of SCA27B in different clinically defined disease subgroups with late-onset ataxia collected among 16 tertiary Italian centers; (2) characterize phenotype and diagnostic findings of patients with SCA27B; (3) compare the Italian cohort with other cohorts reported in recent studies. METHODS: We screened 396 clinically diagnosed late-onset cerebellar ataxias of unknown cause, subdivided in sporadic cerebellar ataxia, ADCA, and multisystem atrophy cerebellar type. We identified 72 new genetically defined subjects with SCA27B. Then, we analyzed the clinical, neurophysiological, and imaging features of 64 symptomatic cases. RESULTS: In our cohort, the prevalence of SCA27B was 13.4% (53/396) with as high as 38.5% (22/57) in ADCA. The median age of onset of SCA27B patients was 62 years. All symptomatic individuals showed evidence of impaired balance and gait; cerebellar ocular motor signs were also frequent. Episodic manifestations at onset occurred in 31% of patients. Extrapyramidal features (17%) and cognitive impairment (25%) were also reported. Brain magnetic resonance imaging showed cerebellar atrophy in most cases (78%). Pseudo-longitudinal assessments indicated slow progression of ataxia and minimal functional impairment. CONCLUSION: Patients with SCA27B in Italy present as an adult-onset, slowly progressive cerebellar ataxia with predominant axial involvement and frequent cerebellar ocular motor signs. The high consistency of clinical features in SCA27B cohorts in multiple populations paves the way toward large-scale, multicenter studies.
Assuntos
Progressão da Doença , Humanos , Pessoa de Meia-Idade , Itália/epidemiologia , Masculino , Feminino , Idoso , Estudos de Coortes , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/epidemiologia , Adulto , Ataxia Cerebelar/genética , Ataxia Cerebelar/epidemiologia , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/fisiopatologia , Idade de Início , Fatores de Crescimento de Fibroblastos , Degenerações EspinocerebelaresRESUMO
The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.
Assuntos
Algoritmos , Inteligência Artificial , Ataxia Cerebelar , Marcha , Doenças Raras , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Marcha/fisiologia , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/diagnóstico , Adulto , Análise da Marcha/métodos , IdosoRESUMO
INTRODUCTION: Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns. PURPOSE AND BACKGROUND: With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like syndrome. METHODS AND RESULTS: This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome. CONCLUSIONS: Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, HSP panels must be included in genetic testing methods for instances of familial ALS.
Assuntos
Proteínas de Membrana , Fenótipo , Humanos , Itália , Masculino , Feminino , Adulto , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Paraplegia Espástica Hereditária/genéticaRESUMO
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Assuntos
Glucosilceramidase , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glucosilceramidase/genética , Itália , Mutação/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnósticoRESUMO
BACKGROUND: Most neurological diseases have no curative treatment; therefore, focusing on prevention is key. Continuous research to uncover the protective and risk factors associated with different neurological diseases is crucial to successfully inform prevention strategies. eHealth has been showing promising advantages in healthcare and public health and may therefore be relevant to facilitate epidemiological studies. OBJECTIVE: In this study, we performed a Delphi consensus exercise to identify the key screening tests to inform the development of a digital neurological examination tool for epidemiological research. METHODS: Twelve panellists (six experts in neurological examination, five experts in data collection-two were also experts in the neurological examination, and three experts in participant experience) of different nationalities joined the Delphi exercise. Experts in the neurological examination provided a selection of items that allow ruling out neurological impairment and can be performed by trained health workers. The items were then rated by them and other experts in terms of their feasibility and acceptability. RESULTS: Ten tests and seven anamnestic questions were included in the final set of screening items for the digital neurological examination. Three tests and five anamnestic questions were excluded from the final selection due to their low ratings on feasibility. CONCLUSION: This work identifies the key feasible and acceptable screening tests and anamnestic questions to build an electronic tool for performing the neurological examination, in the absence of a neurologist.
Assuntos
Consenso , Técnica Delphi , Doenças do Sistema Nervoso , Exame Neurológico , Humanos , Exame Neurológico/normas , Exame Neurológico/métodos , Doenças do Sistema Nervoso/diagnóstico , Estudos Epidemiológicos , FemininoRESUMO
Myotonic dystrophy is a hereditary disorder with systemic involvement. The Italian Neuro-Cardiology Network-"Rete delle Neurocardiologie" (INCN-RNC) is a unique collaborative experience involving neurology units combined with cardio-arrhythmology units. The INCN facilitates the creation of integrated neuro-cardiac teams in Neuromuscular Disease Centers for the management of cardiovascular involvement in the treatment of myotonic dystrophy type 1 (MD1).
RESUMO
This study aimed to assess the responsiveness to the rehabilitation of three trunk acceleration-derived gait indexes, namely the harmonic ratio (HR), the short-term longest Lyapunov's exponent (sLLE), and the step-to-step coefficient of variation (CV), in a sample of subjects with primary degenerative cerebellar ataxia (swCA), and investigate the correlations between their improvements (∆), clinical characteristics, and spatio-temporal and kinematic gait features. The trunk acceleration patterns in the antero-posterior (AP), medio-lateral (ML), and vertical (V) directions during gait of 21 swCA were recorded using a magneto-inertial measurement unit placed at the lower back before (T0) and after (T1) a period of inpatient rehabilitation. For comparison, a sample of 21 age- and gait speed-matched healthy subjects (HSmatched) was also included. At T1, sLLE in the AP (sLLEAP) and ML (sLLEML) directions significantly improved with moderate to large effect sizes, as well as SARA scores, stride length, and pelvic rotation. sLLEML and pelvic rotation also approached the HSmatched values at T1, suggesting a normalization of the parameter. HRs and CV did not significantly modify after rehabilitation. ∆sLLEML correlated with ∆ of the gait subscore of the SARA scale (SARAGAIT) and ∆stride length and ∆sLLEAP correlated with ∆pelvic rotation and ∆SARAGAIT. The minimal clinically important differences for sLLEML and sLLEAP were ≥ 36.16% and ≥ 28.19%, respectively, as the minimal score reflects a clinical improvement in SARA scores. When using inertial measurement units, sLLEAP and sLLEML can be considered responsive outcome measures for assessing the effectiveness of rehabilitation on trunk stability during walking in swCA.
Assuntos
Ataxia Cerebelar , Marcha , Tronco , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tronco/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Idoso , Marcha/fisiologia , Ataxia Cerebelar/reabilitação , Ataxia Cerebelar/fisiopatologia , Adulto , Equilíbrio Postural/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/fisiopatologia , Resultado do TratamentoRESUMO
Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.
Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Hereditary spastic paraplegia (HSP) refers to a group of heterogeneous neurological disorders mainly characterized by corticospinal degeneration (pure forms), but sometimes associated with additional neurological and extrapyramidal features (complex HSP). The advent of next-generation sequencing (NGS) has led to huge improvements in knowledge of HSP genetics and made it possible to clarify the genetic etiology of hundreds of "cold cases," accelerating the process of reaching a molecular diagnosis. The different NGS-based strategies currently employed as first-tier approaches most commonly involve the use of targeted resequencing panels and exome sequencing, whereas genome sequencing remains a second-tier approach because of its high costs. The question of which approach is the best is still widely debated, and many factors affect the choice. Here, we aim to analyze the diagnostic power of different NGS techniques applied in HSP, by reviewing 38 selected studies in which different strategies were applied in different-sized cohorts of patients with genetically uncharacterized HSP.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Testes Genéticos , Loci GênicosRESUMO
BACKGROUND AND PURPOSE: Microtubule defects are a common feature in several neurodegenerative disorders, including hereditary spastic paraplegia. The most frequent form of hereditary spastic paraplegia is caused by mutations in the SPG4/SPAST gene, encoding the microtubule severing enzyme spastin. To date, there is no effective therapy available but spastin-enhancing therapeutic approaches are emerging; thus prognostic and predictive biomarkers are urgently required. METHODS: An automated, simple, fast and non-invasive cell imaging-based method was developed to quantify microtubule cytoskeleton organization changes in lymphoblastoid cells and peripheral blood mononuclear cells. RESULTS: It was observed that lymphoblastoid cells and peripheral blood mononuclear cells from individuals affected by SPG4-hereditary spastic paraplegia show a polarized microtubule cytoskeleton organization. In a pilot study on freshly isolated peripheral blood mononuclear cells, our method discriminates SPG4-hereditary spastic paraplegia from healthy donors and other hereditary spastic paraplegia subtypes. In addition, it is shown that our method can detect the effects of spastin protein level changes. CONCLUSIONS: These findings open the possibility of a rapid, non-invasive, inexpensive test useful to recognize SPG4-hereditary spastic paraplegia subtype and evaluate the effects of spastin-enhancing drug in non-neuronal cells.
Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Espastina/genética , Leucócitos Mononucleares , Projetos Piloto , MutaçãoRESUMO
This study aimed to assess the ability of 25 gait indices to characterize gait instability and recurrent fallers among persons with primary degenerative cerebellar ataxia (pwCA), regardless of gait speed, and investigate their correlation with clinical and kinematic variables. Trunk acceleration patterns were acquired during the gait of 34 pwCA, and 34 age- and speed-matched healthy subjects (HSmatched) using an inertial measurement unit. We calculated harmonic ratios (HR), percent recurrence, percent determinism, step length coefficient of variation, short-time largest Lyapunov exponent (sLLE), normalized jerk score, log-dimensionless jerk (LDLJ-A), root mean square (RMS), and root mean square ratio of accelerations (RMSR) in each spatial direction for each participant. Unpaired t-tests or Mann-Whitney tests were performed to identify significant differences between the pwCA and HSmatched groups. Receiver operating characteristics were plotted to assess the ability to characterize gait alterations in pwCA and fallers. Optimal cutoff points were identified, and post-test probabilities were calculated. The HRs showed to characterize gait instability and pwCA fallers with high probabilities. They were correlated with disease severity and stance, swing, and double support duration, regardless of gait speed. sLLEs, RMSs, RMSRs, and LDLJ-A were slightly able to characterize the gait of pwCA but failed to characterize fallers.
Assuntos
Ataxia Cerebelar , Transtornos Neurológicos da Marcha , Humanos , Caminhada , Equilíbrio Postural , Marcha , Aceleração , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologiaRESUMO
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Tremor Essencial , Humanos , Marcha Atáxica/etiologia , Tremor , Consenso , Ataxia Cerebelar/complicações , Ataxia/complicações , Doenças Cerebelares/complicações , Marcha/fisiologiaRESUMO
Friedreich's ataxia (FRDA) is a rare autosomal recessive neurodegenerative disorder due to the homozygous pathological expansion of guanine-adenine-adenine (GAA) triplet repeats in the first intron of the FXN gene, which encodes for the mitochondrial protein frataxin. In the visual system, the typical manifestations are ocular motility abnormality, optic neuropathy, and retinopathy. Despite the evidence of ophthalmological impairment in FRDA patients, there is a lack of information about the morpho-functional condition of the retina and of the optic pathways in healthy heterozygous carriers of Friedreich's ataxia (C-FRDA). Ten C-FRDA subjects (providing 20 eyes) and thirty-five Controls (providing 70 eyes) underwent a complete neurological and ophthalmological examination comprehensive of functional (full-field Electroretinogram (ffERG), multifocal Electroretinogram (mfERG), Visual Evoked Potential (VEP), and Pattern Reversal Electroretinogram (PERG)) and morphological assessments (Optical Coherence Tomography, OCT) of the retina, macula, retinal ganglion cells, and visual pathways. The groups' data were compared using a two-sample t-test. Pearson's test was used to investigate the morpho-functional correlations. Statistically significant differences (p < 0.01) between C-FRDA and Control eyes for the values of the following parameters were found: ffERG b-wave amplitude, mfERG Response Amplitude Densities, PERG P50 implicit time and P50-N95 amplitude, VEP P100 implicit time, Retinal Nerve Fiber Layer (RNFL) Overall, and Nasal thickness. The values of the OCT macular volume were not statistically different (p > 0.01) between the two Groups. Therefore, our data suggest that, in C-FRDA, a dysfunction of retinal elements without morphological macular impairment may occur. In addition, a morphological impairment of RNFL associated with an abnormal neural conduction along the visual pathways can be also detected.
RESUMO
OBJECTIVE: The aim of this study was to estimate the Friedreich's ataxia (FRDA) prevalence in a highly populated region of Italy (previous studies in small geographic areas gave a largely variable prevalence) and to define the patients' molecular and clinical characteristics. METHODS: For the point-prevalence study, we considered patients belonging to families with a molecular diagnosis of FRDA and resident in Latium on 1 January 2019. The crude prevalence of FRDA, specific for age and sex, was calculated and standardized for age using the Italian population. Moreover, we investigated possible correlations among patients' genetic profile, symptoms, and age of onset. RESULTS: We identified 63 FRDA patients; the crude prevalence for total, males, and females were 1.07 (95% CI: 0.81-1.37), 0.81 (95% CI: 0.54-1.22), and 1.32 (95% CI: 0.97-1.79), per 100,000 inhabitants. We divided FRDA patients by three age-at-onset groups (early-EOFA 73%; late-LOFA 11.1%; very late-VLOFA 15.9%) and found significant differences in the scale for the assessment and rating of ataxia (SARA; p = 0.001), a biased distribution of the shorter allele (p = 0.001), an excess of scoliosis and cardiomyopathy (p = 0.001) in EOFA. To determine the contribution of patients' molecular and clinical characteristics to the annual rate of progression, we performed a multivariate regression analysis that gave an R2 value of 45.3%. CONCLUSIONS: We estimated the crude and standardized prevalence of FRDA in Latium. A clinical classification (EOFA, LOFA, VLOFA) gave significant correlations. This epidemiological estimate allows monitoring disease prevalence over time in cohort studies and/or for developing disease registry.
Assuntos
Ataxia de Friedreich , Estudos de Coortes , Estudos Transversais , Feminino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/epidemiologia , Ataxia de Friedreich/genética , Humanos , Itália/epidemiologia , Masculino , PrevalênciaRESUMO
Background and Objectives: Hereditary spastic paraplegias (HSPs) are a group of inherited rare neurologic disorders characterized by length-dependent degeneration of the corticospinal tracts and dorsal columns, whose prominent clinical feature is represented by spastic gait. Spastic paraplegia type 4 (SPG4, SPAST-HSP) is the most common form. We present both clinical and molecular findings of a large cohort of patients, with the aim of (1) defining the clinical spectrum of SPAST-HSP in Italy; (2) describing their molecular features; and (3) assessing genotype-phenotype correlations to identify features associated with worse disability. Methods: A cross-sectional retrospective study with molecular and clinical data collected in an anonymized database was performed. Results: A total of 723 Italian patients with SPAST-HSP (58% men) from 316 families, with a median age at onset of 35 years, were included. Penetrance was 97.8%, with men showing higher Spastic Paraplegia Rating Scale (SPRS) scores (19.67 ± 12.58 vs 16.15 ± 12.61, p = 0.009). In 26.6% of patients with SPAST-HSP, we observed a complicated phenotype, mainly including intellectual disability (8%), polyneuropathy (6.7%), and cognitive decline (6.5%). Late-onset cases seemed to progress more rapidly, and patients with a longer disease course displayed a more severe neurologic disability, with higher SPATAX (3.61 ± 1.46 vs 2.71 ± 1.20, p < 0.001) and SPRS scores (22.63 ± 11.81 vs 12.40 ± 8.83, p < 0.001). Overall, 186 different variants in the SPAST gene were recorded, of which 48 were novel. Patients with SPAST-HSP harboring missense variants displayed intellectual disability (14.5% vs 4.4%, p < 0.001) more frequently, whereas patients with truncating variants presented more commonly cognitive decline (9.7% vs 2.6%, p = 0.001), cerebral atrophy (11.2% vs 3.4%, p = 0.003), lower limb spasticity (61.5% vs 44.5%), urinary symptoms (50.0% vs 31.3%, p < 0.001), and sensorimotor polyneuropathy (11.1% vs 1.1%, p < 0.001). Increasing disease duration (DD) and abnormal motor evoked potentials (MEPs) were also associated with increased likelihood of worse disability (SPATAX score>3). Discussion: The SPAST-HSP phenotypic spectrum in Italian patients confirms a predominantly pure form of HSP with mild-to-moderate disability in 75% of cases, and slight prevalence of men, who appeared more severely affected. Early-onset cases with intellectual disability were more frequent among patients carrying missense SPAST variants, whereas patients with truncating variants showed a more complicated disease. Both longer DD and altered MEPs are associated with worse disability.
RESUMO
Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out an miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The up-regulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; P < 0.0001). Using a receiver operating characteristic curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an area under the ROC curve value of 0.835 (P < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1-associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.