Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nanoscale ; 16(23): 11211-11222, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775497

RESUMO

Graphyne- and graphdiyne-like model systems have attracted much attention from many structural, theoretical, and synthetic scientists because of their promising electronic, optical, and mechanical properties, which are crucially affected by the presence, abundance and distribution of triple bonds within the nanostructures. In this work, we performed the two-step bottom-up on-surface synthesis of graphyne- and graphdiyne-based molecular wires on the Au(111). We characterized their structural and chemical properties both in situ (UHV conditions) through STM and XPS and ex situ (in air) through Raman spectroscopy. By comparing the results with the well-known growth of poly(p-phenylene) wires (namely the narrowest armchair graphene nanoribbon), we were able to show how to discriminate different numbers of triple bonds within a molecule or a nanowire also containing phenyl rings. Even if the number of triple bonds can be effectively determined from the main features of STM images and confirmed by fitting the C1s peak in XPS spectra, we obtained the most relevant results from ex situ Raman spectroscopy, despite the sub-monolayer amount of molecular wires. The detailed analysis of Raman spectra, combined with density functional theory (DFT) simulations, allowed us to identify the main features related to the presence of isolated (graphyne-like systems) or at least two conjugated triple bonds (graphdiyne-like systems). Moreover, other spectral features can be exploited to understand if the chemical structure of graphyne- and graphdiyne-based nanostructures suffered unwanted reactions. As in the case of sub-monolayer graphene nanoribbons obtained by on-surface synthesis, we demonstrate that Raman spectroscopy can be used for a fast, highly sensitive and non-destructive determination of the properties, the quality and the stability of the graphyine- and graphdiyne-based nanostructures obtained by this highly promising approach.

2.
J Phys Chem A ; 128(14): 2703-2716, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507898

RESUMO

We explored the optoelectronic and vibrational properties of a new class of halogen-terminated carbon atomic wires in the form of polyynes using UV-vis, infrared absorption, Raman spectroscopy, X-ray single-crystal diffraction, and DFT calculations. These polyynes terminate on one side with a cyanophenyl group and on the other side, with a halogen atom X (X = Cl, Br, I). We focus on the effect of different halogen terminations and increasing lengths (i.e., 4, 6, and 8 sp-carbon atoms) on the π-electron conjugation and the electronic structure of these systems. The variation in the sp-carbon chain length is more effective in tuning these features than changing the halogen end group, which instead leads to a variety of solid-state architectures. Shifts between the vibrational frequencies of samples in crystalline powders and in solution reflect intermolecular interactions. In particular, the presence of head-to-tail dimers in the crystals is responsible for the modulation of the charge density associated with the π-electron system, and this phenomenon is particularly important when strong I··· N halogen bonds occur.

3.
Energy Fuels ; 37(23): 17836-17862, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38094910

RESUMO

Electrochemical energy storage technology has emerged as one of the most viable solutions to tackle the challenge of fossil-fuel-based technology and associated global pollution. Supercapacitors are widely used for high-power applications, and there is tremendous ongoing effort to make them useful for high-energy storage applications. While electrode materials of supercapacitors play a central role in charge storage performance, insights into the contribution from different charge storage mechanisms are crucial from both fundamental and applied aspects. In this context, apart from the electric double layer and fast redox reaction at/near the surface, another pronounced contribution from the electrode is quantum capacitance (CQ). Here, the origin of CQ, how it contributes to the total capacitance, the possible strategies to improve it, and the state-of-art CQ of electrode materials, including carbon, two-dimensional materials, and their composites, are discussed. Although most of the studies on quantifying CQ are theoretical, some case studies on experimental measurements using standard electrochemical techniques are summarized. With an overview and critical analysis of theoretical studies on quantum capacitance of electrode materials, this review critically examines the supercapacitor design strategies, including choosing the right materials and electrolytes. These insights are also relevant to other types of clean energy storage technologies, including metal-ion capacitors and batteries.

4.
J Am Chem Soc ; 145(33): 18382-18390, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37525883

RESUMO

One-dimensional (1D) linear nanostructures comprising sp-hybridized carbon atoms, as derivatives of the prototypical allotrope known as carbyne, are predicted to possess outstanding mechanical, thermal, and electronic properties. Despite recent advances in their synthesis, their chemical and physical properties are still poorly understood. Here, we investigate the photophysics of a prototypical polyyne (i.e., 1D chain with alternating single and triple carbon bonds) as the simplest model of finite carbon wire and as a prototype of sp-carbon-based chains. We perform transient absorption experiments with high temporal resolution (<30 fs) on monodispersed hydrogen-capped hexayne H─(C≡C)6─H synthesized by laser ablation in liquid. With the support of computational studies based on ground state density functional theory (DFT) and excited state time-dependent (TD)-DFT calculations, we provide a comprehensive description of the excited state relaxation processes at early times following photoexcitation. We show that the internal conversion from a bright high-energy singlet excited state to a low-lying singlet dark state is ultrafast and takes place with a 200 fs time constant, followed by thermalization on the picosecond time scale and decay of the low-energy singlet state with hundreds of picoseconds time constant. We also show that the time scale of these processes does not depend on the end groups capping the sp-carbon chain. The understanding of the primary photoinduced events in polyynes is of key importance both for fundamental knowledge and for potential optoelectronic and light-harvesting applications of low-dimensional nanostructured carbon-based materials.

5.
Nanoscale ; 15(16): 7493-7501, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017209

RESUMO

Van der Waals heterostructures of transition metal dichalcogenides (TMDs) are promising systems for engineering functional layered 2D materials with tailored properties. In this work, we study the growth of WS2/MoS2 and MoS2/WS2 heterobilayers by pulsed laser deposition (PLD) under ultra-high vacuum conditions. Using Au(111) as growth substrate, we investigated the heterobilayer morphology and structure at the nanoscale by in situ scanning tunneling microscopy. Our experiments show that the heterostructure growth can be controlled with high coverage and thickness sensitivity by tuning the number of laser pulses in the PLD process. Raman spectroscopy complemented our investigation, revealing the effect of the interaction with the metallic substrate on the TMD vibrational properties and a strong interlayer coupling between the MoS2 and WS2 layers. The transfer of the heterobilayers on a silica substrate via a wet etching process shows the possibility to decouple them from the native metallic substrate and confirms that the interlayer coupling is not substrate-dependent. This work highlights the potential of the PLD technique as a method to grow TMD heterostructures, opening to new perspectives in the synthesis of complex 2D layered materials.

6.
Phys Chem Chem Phys ; 24(22): 13616-13624, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616431

RESUMO

Hybrid sp-sp2 structures can be efficiently obtained on metal substrates via on-surface synthesis. The choice of both the precursor and the substrate impacts on the effectiveness of the process and the stability of the formed structures. Here we demonstrate that using anthracene-based precursor molecules on Au(111) the formation of polymers hosting sp carbon chains is affected by the steric hindrance between aromatic groups. In particular, by scanning tunneling microscopy experiments and density functional theory simulations we show that the de-metalation of organometallic structures induces a lateral separation of adjacent polymers that prevents the formation of ordered domains. This study contributes to the understanding of the mechanisms driving the on-surface synthesis processes, a fundamental step toward the realization of novel carbon-based nanostructures with perspective applications in nanocatalysis, photoconversion, and nano-electronics.

7.
Adv Mater ; 34(15): e2110468, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35178779

RESUMO

Solution-processed, large-area, and flexible electronics largely relies on the excellent electronic properties of sp2 -hybridized carbon molecules, either in the form of π-conjugated small molecules and polymers or graphene and carbon nanotubes. Carbon with sp-hybridization, the foundation of the elusive allotrope carbyne, offers vast opportunities for functionalized molecules in the form of linear carbon atomic wires (CAWs), with intriguing and even superior predicted electronic properties. While CAWs represent a vibrant field of research, to date, they have only been applied sparingly to molecular devices. The recent observation of the field-effect in microcrystalline cumulenes suggests their potential applications in solution-processed thin-film transistors but concerns surrounding the stability and electronic performance have precluded developments in this direction. In the present study, ideal field-effect characteristics are demonstrated for solution-processed thin films of tetraphenyl[3]cumulene, the shortest semiconducting CAW. Films are deposited through a scalable, large-area, meniscus-coating technique, providing transistors with hole mobilities in excess of 0.1 cm2  V-1  s-1 , as well as promising operational stability under dark conditions. These results offer a solid foundation for the exploitation of a vast class of molecular semiconductors for organic electronics based on sp-hybridized carbon systems and create a previously unexplored paradigm.

8.
J Phys Chem C Nanomater Interfaces ; 126(2): 1132-1139, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087609

RESUMO

Mixed-dimensional van der Waals heterostructures formed by molecular assemblies and 2D materials provide a novel platform for fundamental nanoscience and future nanoelectronics applications. Here we investigate a prototypical hybrid heterostructure between pentacene molecules and 2D MoS2 nanocrystals, deposited on Au(111) by combining pulsed laser deposition and organic molecular beam epitaxy. The obtained structures were investigated in situ by scanning tunneling microscopy and spectroscopy and analyzed theoretically by density functional theory calculations. Our results show the formation of atomically thin pentacene/MoS2 lateral heterostructures on the Au substrate. The most stable pentacene adsorption site corresponds to MoS2 terminations, where the molecules self-assemble parallel to the direction of MoS2 edges. The density of states changes sharply across the pentacene/MoS2 interface, indicating a weak interfacial coupling, which leaves the electronic signature of MoS2 edge states unaltered. This work unveils the self-organization of abrupt mixed-dimensional lateral heterostructures, opening to hybrid devices based on organic/inorganic one-dimensional junctions.

9.
J Phys Chem C Nanomater Interfaces ; 125(33): 18456-18466, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34476043

RESUMO

Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and sp/sp2 carbon ratios. We analyze how structural and topological effects can tune the relative stability and the electronic behavior, to propose a rationale for the development of new systems with tailored properties. A total of 26 structures have been generated, including the already known polymorphs such as α-, ß-, and γ-GDY. Periodic density functional theory calculations have been employed to optimize the 2D crystal structures and to compute the total energy, the band structure, and the density of states. Relative energies with respect to graphene have been found to increase when the values of the carbon sp/sp2 ratio increase, following however different trends based on the peculiar topologies present in the crystals. These topologies also influence the band structure, giving rise to semiconductors with a finite band gap, zero-gap semiconductors displaying Dirac cones, or metallic systems. The different trends allow identifying some topological effects as possible guidelines in the design of new 2D carbon materials beyond graphene.

10.
Angew Chem Int Ed Engl ; 60(34): 18876-18881, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34170591

RESUMO

Although being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b']dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2',3'-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 µA cm-2 and 120 µA cm-2 (at 0.3 V vs. RHE; pH 13), which are 4.2 and 3 times higher than that of pDET, respectively. Moreover, by combining DFT calculations and electrochemical operando resonance Raman spectroscopy, we propose that the electron-enriched Cß of the outer thiophene rings of pDTT are the water dissociation active sites, while the -C≡C- bonds function as the active sites for hydrogen evolution.

11.
J Phys Chem C Nanomater Interfaces ; 125(17): 9479-9485, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34055127

RESUMO

The study of MoS2/metal interfaces is crucial for engineering efficient semiconductor-metal contacts in 2D MoS2-based devices. Here we investigate a MoS2/Ag heterostructure fabricated by growing a single MoS2 layer on Ag(111) by pulsed laser deposition under ultrahigh vacuum (UHV) conditions. The surface structure is observed in situ by scanning tunneling microscopy, revealing the hexagonal moiré pattern characteristic of the clean MoS2/Ag(111) interface. Ex situ Raman spectroscopy reveals an anomalous behavior of vibrational modes, induced by the strong MoS2-Ag interaction. After few-hours exposure to ambient conditions the Raman response significantly changes and the formation of molybdenum oxysulfides is revealed by X-ray photoelectron spectroscopy. These effects are due to the interplay with water vapor and can be reversed by a moderate UHV annealing. A polymeric (PMMA) capping is demonstrated to hinder water-induced modifications, preserving the original interface quality for months.

12.
Phys Chem Chem Phys ; 22(45): 26312-26321, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175935

RESUMO

In recent years there has been growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains is the so-called polyyne, characterized by the alternation of single and triple bonds that can be synthesized via pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by using different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigated the role of the solvent in polyyne synthesis and stability, and discussed the possible formation mechanisms. The presence of methyl- and cyano-groups in the solutions influences the termination of polyynes, allowing the detection, of hydrogen-capped polyynes up to H-C22-H, methyl-capped polyynes up to H-C18-CH3 and cyanopolyynes up to H-C12-CN. The assignment of each species was performed via UV-vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to highlight the differences in the shape and positions of the characteristic Raman bands of the size-selected polyynes with different terminations (hydrogen, methyl and cyano groups). The stability in time of each polyyne was investigated by evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyyne stability was individuated.

13.
J Phys Chem Lett ; 11(5): 1970-1974, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32067464

RESUMO

Carbyne and linear carbon structures based on sp-hybridization are attractive targets as the ultimate one-dimensional system (i.e., one-atom in diameter) featuring wide tunability of optical and electronic properties. Two possible structures exist for sp-carbon atomic wires: (a) the polyynes with alternated single-triple bonds and (b) the cumulenes with contiguous double bonds. Theoretical studies predict semiconducting behavior for polyynes, while cumulenes are expected to be metallic. Very limited experimental work, however, has been directed toward investigating the electronic properties of these structures, mostly at the single-molecule or monolayer level. However, sp-carbon atomic wires hold great potential for solution-processed thin-film electronics, an avenue not exploited to date. Herein, we report the first field-effect transistor (FET) fabricated employing cumulenic sp-carbon atomic wires as a semiconductor material. Our proof-of-concept FET device is easily fabricated by solution drop casting and paves the way for exploiting sp-carbon atomic wires as active electronic materials.

14.
ACS Appl Nano Mater ; 3(12): 12178-12187, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33392466

RESUMO

Graphdiyne, atomically thin two-dimensional (2D) carbon nanostructure based on sp-sp2 hybridization is an appealing system potentially showing outstanding mechanical and optoelectronic properties. Surface-catalyzed coupling of halogenated sp-carbon-based molecular precursors represents a promising bottom-up strategy to fabricate extended 2D carbon systems with engineered structure on metallic substrates. Here, we investigate the atomic-scale structure and electronic and vibrational properties of an extended graphdiyne-like sp-sp2 carbon nanonetwork grown on Au(111) by means of the on-surface synthesis. The formation of such a 2D nanonetwork at its different stages as a function of the annealing temperature after the deposition is monitored by scanning tunneling microscopy (STM), Raman spectroscopy, and combined with density functional theory (DFT) calculations. High-resolution STM imaging and the high sensitivity of Raman spectroscopy to the bond nature provide a unique strategy to unravel the atomic-scale properties of sp-sp2 carbon nanostructures. We show that hybridization between the 2D carbon nanonetwork and the underlying substrate states strongly affects its electronic and vibrational properties, modifying substantially the density of states and the Raman spectrum compared to the free standing system. This opens the way to the modulation of the electronic properties with significant prospects in future applications as active nanomaterials for catalysis, photoconversion, and carbon-based nanoelectronics.

15.
Nanoscale ; 11(39): 18191-18200, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31560011

RESUMO

Long linear carbon nanostructures based on sp-hybridization can be synthesized by exploiting on-surface synthesis of halogenated precursors evaporated on Au(111), thus opening a way to investigations by surface-science techniques. By means of an experimental approach combining scanning tunneling microscopy and spectroscopy (STM and STS) with ex situ Raman spectroscopy we investigate the structural, electronic and vibrational properties of polymeric sp-sp2 carbon atomic wires composed by sp-carbon chains connected through phenyl groups. Density-functional-theory (DFT) calculations of the structure and the electronic density of states allow us to simulate STM images and to compute Raman spectra. The comparison of experimental data with DFT simulations unveil the properties and the formation stages as a function of the annealing temperature. Atomic-scale structural information from STM complement the Raman sensitivity to the single molecular bond to open the way to detailed understanding of these novel carbon nanostructures.

16.
Nanoscale Adv ; 1(2): 643-655, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931429

RESUMO

Molybdenum disulphide (MoS2) is a promising material for heterogeneous catalysis and novel two-dimensional (2D) optoelectronic devices. In this work, we synthesized single-layer (SL) MoS2 structures on Au(111) by pulsed laser deposition (PLD) under ultra-high vacuum (UHV) conditions. By controlling the PLD process, we were able to tune the sample morphology from low-coverage SL nanocrystals to large-area SL films uniformly wetting the whole substrate surface. We investigated the obtained MoS2 structures at the nanometer and atomic scales by means of in situ scanning tunneling microscopy/spectroscopy (STM/STS) measurements, to study the interaction between SL MoS2 and Au(111)-which for example influences MoS2 lattice orientation-the structure of point defects and the formation of in-plane MoS2/Au heterojunctions. Raman spectroscopy, performed ex situ on large-area SL MoS2, revealed significant modifications of the in-plane E12g and out-of-plane A1g vibrational modes, possibly related to strain and doping effects. Charge transfer between SL MoS2 and Au is also likely responsible for the total suppression of excitonic emission, observed by photoluminescence (PL) spectroscopy.

17.
Materials (Basel) ; 11(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558338

RESUMO

Carbon structures comprising sp 1 chains (e.g., polyynes or cumulenes) can be synthesized by exploiting on-surface chemistry and molecular self-assembly of organic precursors, opening to the use of the full experimental and theoretical surface-science toolbox for their characterization. In particular, polarized near-edge X-ray absorption fine structure (NEXAFS) can be used to determine molecular adsorption angles and is here also suggested as a probe to discriminate sp 1 /sp 2 character in the structures. We present an ab initio study of the polarized NEXAFS spectrum of model and real sp 1 /sp 2 materials. Calculations are performed within density functional theory with plane waves and pseudopotentials, and spectra are computed by core-excited C potentials. We evaluate the dichroism in the spectrum for ideal carbynes and highlight the main differences relative to typical sp 2 systems. We then consider a mixed polymer alternating sp 1 C 4 units with sp 2 biphenyl groups, recently synthesized on Au(111), as well as other linear structures and two-dimensional networks, pointing out a spectral line shape specifically due to the the presence of linear C chains. Our study suggests that the measurements of polarized NEXAFS spectra could be used to distinctly fingerprint the presence of sp 1 hybridization in surface-grown C structures.

18.
Nanoscale ; 8(43): 18507-18515, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27782269

RESUMO

Developing low cost, highly active and stable electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) using the same electrolyte has remained a major challenge. Herein, we report a novel and robust material comprised of nickel-cobalt nanoparticles coated on a porous nitrogen-doped carbon (NC) thin film synthesized via a two-step pulsed laser deposition technique. The optimized sample (Ni0.5Co0.5/NC) achieved the lowest overpotentials of 176 mV and 300 mV at a current density of 10 mA cm-2 for HER and OER, respectively. The optimized OER activity might be attributed to the available metal oxide nanoparticles with an effective electronic structure configuration and enhanced mass/charge transport capability. At the same time, the porous nitrogen doped carbon incorporated with cobalt and nickel species can serve as an excellent HER catalyst. As a result, the newly developed electrocatalysts manifest high current densities and strong electrochemical stability in overall water splitting, outperforming most of the previously reported non-precious metal-based catalysts.

19.
Chem Commun (Camb) ; 52(80): 11947-11950, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722241

RESUMO

Identification of efficient non-precious metal catalysts for the oxygen evolution reaction (OER) remains a great challenge. Here we report robust cobalt (oxide) nanoparticles deposited on a porous nitrogen-doped carbon (N-carbon) film prepared by pulsed laser deposition under a reactive background gas, which exhibit highly efficient OER performance with a low overpotential and high stability.

20.
Beilstein J Nanotechnol ; 7: 1878-1884, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144537

RESUMO

Phosphoric acid is an inorganic acid used for producing graphene sheets by delaminating graphite in (electro-)chemical baths. The observed phenomenology during the electrochemical treatment in phosphoric acid solution is partially different from other acidic solutions, such as sulfuric and perchloric acid solutions, where the graphite surface mainly forms blisters. In fact, the graphite surface is covered by a thin layer of modified (oxidized) material that can be observed when an electrochemical potential is swept in the anodic current regime. We characterize this particular surface evolution by means of a combined electrochemical, atomic force microscopy and Raman spectroscopy investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA