Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
bioRxiv ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38765957

RESUMO

Western blotting is a stalwart technique for analyzing specific proteins and/or their post-translational modifications. However, it remains challenging to accommodate more than ∼10 samples per experiment without substantial departure from trusted, established protocols involving accessible instrumentation. Here, we describe a 96-sample western blot that conforms to standard 96-well plate dimensional constraints and has little operational deviation from standard western blotting. The main differences are that (i) submerged polyacrylamide gel electrophoresis is operated horizontally (similar to agarose gels) as opposed to vertically, and (ii) a 6 mm thick gel is used, with 2 mm most relevant for membrane transfer (vs ∼1 mm typical). Results demonstrate both wet and semi-dry transfer are compatible with this gel thickness. The major tradeoff is reduced molecular weight resolution, due primarily to less available migration distance per sample. We demonstrate proof-of-principle using gels loaded with molecular weight ladder, recombinant protein, and cell lysates. We expect the 96-well western blot will increase reproducibility, efficiency, and capacity for biological characterization relative to established western blots.

2.
Biomedicines ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38790952

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders (NDDs) with a high unmet medical need. The diagnosis of ASD is currently based on behavior criteria, which overlooks the diversity of genetic, neurophysiological, and clinical manifestations. Failure to acknowledge such heterogeneity has hindered the development of efficient drug treatments for ASD and other NDDs. DEPI® (Databased Endophenotyping Patient Identification) is a systems biology, multi-omics, and machine learning-driven platform enabling the identification of subgroups of patients with NDDs and the development of patient-tailored treatments. In this study, we provide evidence for the validation of a first clinically and biologically defined subgroup of patients with ASD identified by DEPI, ASD Phenotype 1 (ASD-Phen1). Among 313 screened patients with idiopathic ASD, the prevalence of ASD-Phen1 was observed to be ~24% in 84 patients who qualified to be enrolled in the study. Metabolic and transcriptomic alterations differentiating patients with ASD-Phen1 were consistent with an over-activation of NF-κB and NRF2 transcription factors, as predicted by DEPI. Finally, the suitability of STP1 combination treatment to revert such observed molecular alterations in patients with ASD-Phen1 was determined. Overall, our results support the development of precision medicine-based treatments for patients diagnosed with ASD.

3.
Clin Genet ; 104(2): 198-209, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37198960

RESUMO

Phelan-McDermid Syndrome (PMS) is caused by deletions at chromosome 22q13.3 or pathogenic/likely pathogenic SHANK3 variants. The clinical presentation is extremely variable and includes global developmental delay/intellectual disability (ID), seizures, neonatal hypotonia, and sleep disturbances, among others. This study investigated the prevalence of sleep disturbances, and the genetic and metabolic features associated with them, in a cohort of 56 individuals with PMS. Sleep data were collected via standardized observer/caregiver questionnaires, while genetic data from array-CGH and sequencing of 9 candidate genes within the 22q13.3 region, and metabolic profiling utilized the Biolog Phenotype Mammalian MicroArray plates. Sleep disturbances were present in 64.3% of individuals with PMS, with the most common problem being waking during the night (39%). Sleep disturbances were more prevalent in individuals with a SHANK3 pathogenic variant (89%) compared to subjects with 22q13.3 deletions of any size (59.6%). Distinct metabolic profiles for individuals with PMS with and without sleep disturbances were also identified. These data are helpful information for recognizing and managing sleep disturbances in individuals with PMS, outlining the main candidate gene for this neurological manifestation, and highlighting potential biomarkers for early identification of at-risk subjects and molecular targets for novel treatment approaches.


Assuntos
Transtornos Cromossômicos , Transtornos do Sono-Vigília , Animais , Humanos , Transtornos Cromossômicos/genética , Deleção Cromossômica , Fenótipo , Sono/genética , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/genética , Cromossomos Humanos Par 22/genética , Mamíferos/genética
4.
Hum Mol Genet ; 32(9): 1457-1465, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36458889

RESUMO

Mosaic variants in the PIK3CA gene, encoding the catalytic subunit of phosphoinositide 3-kinase (PI3K), produce constitutive PI3K activation, which causes PIK3CA-related overgrowth spectrum disorders. To date, fewer than 20 patients have been described with germline alterations in PIK3CA. In this study, we describe three unrelated individuals with overgrowth and germline PIK3CA variants. These variants were discovered through whole-exome sequencing and confirmed as germline by testing multiple tissue types, when available. Functional analysis using Patient 1's fibroblast cell line and two previously reported patients' cell lines showed increased phosphorylation of AKT during cellular starvation revealing constitutive activation of the phosphoinositide-3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway. Alternatively, stimulation of the cells by fetal bovine serum produced a reduced response, indicating an activated status of the PI3K complex reducing the pathway response to further external stimulation. Additional studies utilizing Biolog Phenotype Microarray technology indicated reduced energy production when cells were exposed to growth factors stimulating the PI3K/AKT/mTOR pathway, confirming the trend observed in the AKT phosphorylation test after stimulation. Furthermore, treatment with inhibitors of the PI3K/AKT/mTOR pathway rescued the normal energy response in the patients' cells. Collectively, these data demonstrate that disease-causing germline PIK3CA variants have a functional consequence, similar to mosaic variants in the PI3K/AKT/mTOR pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Doenças Genéticas Inatas , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Germinativas/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/fisiopatologia , Mutação em Linhagem Germinativa , Fosforilação
5.
Clin Genet ; 101(1): 87-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664257

RESUMO

Phelan-McDermid syndrome (PMS) (OMIM*606232) is a rare genetic disorder characterized by intellectual disability, autistic features, speech delay, minor dysmorphia, and seizures. This study was conducted to investigate the prevalence of seizures and the association with genetic and metabolic features since there has been little research related to seizures in PMS. For 57 individuals, seizure data was collected from caregiver interviews, genetic data from existing cytogenetic records and Sanger sequencing for nine 22q13 genes, and metabolic profiling from the Phenotype Mammalian MicroArray (PM-M) developed by Biolog. Results showed that 46% of individuals had seizures with the most common type being absence and grand-mal seizures. Seizures were most prevalent in individuals with pathogenic SHANK3 mutations (70%), those with deletion sizes >4 Mb (16%), and those with deletion sizes <4 Mb (71%) suggesting involvement of genes in addition to SHANK3. Additionally, a 3 Mb genomic region on 22q13.31 containing the gene TBC1D22A, was found to be significantly associated with seizure prevalence. A distinct metabolic profile was identified for individuals with PMS with seizures and suggested among other features a disrupted utilization of main energy sources using Biolog plates. The results of this study will be helpful for clinicians and families in anticipating seizures in these children and for researchers to identify candidate genes for the seizure phenotype.


Assuntos
Transtornos Cromossômicos/genética , Transtornos Cromossômicos/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Metabolômica , Convulsões/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Cromossomos Humanos Par 22/genética , Cromossomos Humanos Par 22/metabolismo , Feminino , Genômica/métodos , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Convulsões/diagnóstico , Adulto Jovem
6.
Data Brief ; 39: 107598, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34877376

RESUMO

Experiments employing the Phenotype Mammalian Microarray (PM-M) technology were performed on lymphoblastoid cell lines (LCLs) from individuals with autism spectrum disorder (ASD) and age-matched controls. We used the custom-made PM-M plate designed to assess differential utilization of the amino acid tryptophan. Multiple parameters such as the sample size, incubation time, and cell concentration have been tested, leading to optimized protocols and minimized background noise by variable selection while controlling for false discoveries. The assay generated data based on the production of nicotinamide adenine dinucleotide (NADH) in the presence of different compounds containing tryptophan and showed clear differences between ASD and control samples.

7.
PLoS One ; 16(7): e0253859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34228749

RESUMO

Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.


Assuntos
Transtornos Cromossômicos/genética , Rearranjo Gênico , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Estudos de Coortes , Feminino , Variação Genética , Humanos , Masculino
8.
Metab Brain Dis ; 36(5): 1049-1056, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33661512

RESUMO

SATB2-associated syndrome (SAS) is a multisystemic disorder characterized by developmental delay often with concurrent autistic tendencies. This study aimed to characterize cellular metabolic pathways and energy metabolism from cells derived from individuals with SAS. The cellular production of NADH (nicotinamide adenine dinucleotide, reduced form) as determined by the Phenotype Mammalian MicroArrays was measured in lymphoblastoid cell lines derived from 11 subjects with a molecularly confirmed diagnosis of SAS and compared to a control population of 50 age-matched typically developing individuals. All patients were evaluated clinically by a multidisciplinary team. Eleven individuals (five in a screening cohort and six in the validation cohort, mean age 6.1 years) were recruited to the study. All individuals had developmental delay and the diagnosis of autism was previously established in five of them. Key metabolic findings included reduced NADH production in the presence of phosphorylated carbohydrates (with corresponding increased production in the presence of alternative carbon-based energy sources), increased response to certain hormones (ß-estradiol in particular), and significantly reduced levels of NADH in wells containing tryptophan. The individual analysis revealed no particular differences among the SAS subjects based on molecular findings or phenotypic features. In conclusion, individuals with SAS have a common and recognizable metabolic profile. A lower capacity to utilize glucose as an energy substrate could be contributing to the neurodevelopment phenotype of SAS. The identified abnormalities offer previously unexplored insight into the potential pathophysiology of common SAS phenotypic features.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Metabolismo Energético/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Fatores de Transcrição/genética , Adolescente , Transtorno do Espectro Autista/metabolismo , Criança , Pré-Escolar , Deficiências do Desenvolvimento/metabolismo , Feminino , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Síndrome , Fatores de Transcrição/metabolismo
9.
Mol Genet Genomic Med ; 8(1): e1036, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31701662

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental disorder whose molecular mechanisms are largely unknown. Several studies have shown an association between ASD and abnormalities in the metabolism of amino acids, specifically tryptophan and branched-chain amino acids (BCAAs). METHODS: Ninety-seven patients with ASD were screened by Sanger sequencing the genes encoding the heavy (SLC3A2) and light subunits (SLC7A5 and SLC7A8) of the large amino acid transporters (LAT) 1 and 2. LAT1 and 2 are responsible for the transportation of tryptophan and BCAA across the blood-brain barrier and are expressed both in blood and brain. Functional studies were performed employing the Biolog Phenotype Microarray Mammalian (PM-M) technology to investigate the metabolic profiling in lymphoblastoid cell lines from 43 patients with ASD and 50 controls with particular focus on the amino acid substrates of LATs. RESULTS: We detected nine likely pathogenic variants in 11 of 97 patients (11.3%): three in SLC3A2, three in SLC7A5, and three in SLC7A8. Six variants of unknown significance were detected in eight patients, two of which also carrying a likely pathogenic variant. The functional studies showed a consistently reduced utilization of tryptophan, accompanied by evidence of reduced utilization of other large aromatic amino acids (LAAs), either alone or as part of a dipeptide. CONCLUSION: Coding variants in the LAT genes were detected in 17 of 97 patients with ASD (17.5%). Metabolic assays indicate that such abnormalities affect the utilization of certain amino acids, particularly tryptophan and other LAAs, with potential consequences on their transport across the blood barrier and their availability during brain development. Therefore, abnormalities in the LAT1 and two transporters are likely associated with an increased risk of developing ASD.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Transtorno do Espectro Autista/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Transportador 1 de Aminoácidos Neutros Grandes/genética , Adolescente , Adulto , Transtorno do Espectro Autista/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Triptofano/metabolismo
10.
Clin Genet ; 94(6): 590-591, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30308089

RESUMO

The PNPLA3 gene maps in the 22q13 region and can have modifying effects on the phenotype of patients with Phelan-McDermid syndrome (PMS). The PNPLA3 p.I148M variant was detected in two PMS patients presenting with refractory seizures, gastrointestinal issues, and liver dysfunction. The p.I148M variant leads to macrovescicular steaosis and predisposes to liver disorders from steatohepatitis to fibrosis. Accumulation of lipid macrovescicles in the hepatocytes affects several pathways, including the metabolismof anti-epileptics, possibly leading to the lack of response to anti-epileptic treatments reported in the two cases. Screening for the p.I148M variant can identify PMS patients at higher risk for liver dyfunction and help designing personalized therapeutic protocols.


Assuntos
Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Lipase/genética , Proteínas de Membrana/genética , Polimorfismo Genético , Alelos , Substituição de Aminoácidos , Biomarcadores , Deleção Cromossômica , Mapeamento Cromossômico , Cromossomos Humanos Par 22/genética , Estudos de Associação Genética/métodos , Genótipo , Humanos , Masculino , Fenótipo , Adulto Jovem
11.
Nat Commun ; 9(1): 337, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348635

RESUMO

The originally published version of this Article contained errors in Figure 1. In panel c, the grey shading denoting evolutionary conservation and the arrowheads indicating amino acids affected in Snyder-Robinson syndrome were displaced relative to the sequence. These errors have now been corrected in both the PDF and HTML versions of the manuscript.

12.
Nat Commun ; 8(1): 1257, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097652

RESUMO

Polyamines are tightly regulated polycations that are essential for life. Loss-of-function mutations in spermine synthase (SMS), a polyamine biosynthesis enzyme, cause Snyder-Robinson syndrome (SRS), an X-linked intellectual disability syndrome; however, little is known about the neuropathogenesis of the disease. Here we show that loss of dSms in Drosophila recapitulates the pathological polyamine imbalance of SRS and causes survival defects and synaptic degeneration. SMS deficiency leads to excessive spermidine catabolism, which generates toxic metabolites that cause lysosomal defects and oxidative stress. Consequently, autophagy-lysosome flux and mitochondrial function are compromised in the Drosophila nervous system and SRS patient cells. Importantly, oxidative stress caused by loss of SMS is suppressed by genetically or pharmacologically enhanced antioxidant activity. Our findings uncover some of the mechanisms underlying the pathological consequences of abnormal polyamine metabolism in the nervous system and may provide potential therapeutic targets for treating SRS and other polyamine-associated neurological disorders.


Assuntos
Autofagia/genética , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Lisossomos/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Estresse Oxidativo/genética , Poliaminas/metabolismo , Espermina Sintase/genética , Sinapses/ultraestrutura , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Drosophila melanogaster , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/ultraestrutura , Espermidina/metabolismo , Espermina Sintase/deficiência , Espermina Sintase/metabolismo , Taxa de Sobrevida , Sinapses/efeitos dos fármacos
13.
Orphanet J Rare Dis ; 10: 105, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26306707

RESUMO

BACKGROUND: Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder associated with a terminal deletion affecting chromosome 22 (22q13) that results in the loss of function of the SHANK3 gene. SHANK3 has also been identified in gene-linkage studies to be associated with autism spectrum disorder (ASD). Diagnosis of ASD in individuals with PMS is complicated by the presence of moderate to profound global developmental delay/intellectual disability as well as other co-morbid systemic and neurological symptoms. METHODS: The current study aimed to characterize the symptoms of ASD in patients with PMS and to do a preliminary exploration of genotype-ASD phenotype correlations. We conducted a standardized interview with 40 parents/guardians of children with PMS. Further, we conducted analyses on the relationship between disruption of SHANK3 and adjacent genes on specific characteristic symptoms of ASD in PMS in small subset of the sample. RESULTS: The majority of PMS participants in our sample displayed persistent deficits in Social communication, but only half met diagnostic criteria under the restricted, repetitive patterns of behavior, interests, or activities domain. Furthermore, logistic regressions indicated that general developmental delay significantly contributed to the ASD diagnosis. The analyses relating the PMS genotype to the behavioral phenotype revealed additional complex relationships with contributions of genes in both deleted and preserved SHANK3 regions to the ASD phenotype and other neurobehavioral impairments. CONCLUSIONS: There appears to be a unique behavioral phenotype associated with ASD in individuals with PMS. There also appears to be contributions of genes in both deleted and preserved SHANK3 regions to the ASD phenotype and other neurobehavioral impairments. Better characterization of the behavioral phenotype using additional standardized assessments and further analyses exploring the relationship between the PMS genotype and behavioral phenotype in a larger sample are warranted.


Assuntos
Transtorno do Espectro Autista/genética , Transtornos Cromossômicos/genética , Genótipo , Fenótipo , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Transtornos Cromossômicos/psicologia , Cromossomos Humanos Par 22/genética , Estudos de Coortes , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA