Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Biophys Chem ; 310: 107256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728807

RESUMO

Understanding the mechanisms by which drugs interact with cell membranes is crucial for unraveling the underlying biochemical and biophysical processes that occur on the surface of these membranes. Our research focused on studying the interaction between an ester-type derivative of tristearoyl uridine and model cell membranes composed of lipid monolayers at the air-water interface. For that, we selected a specific lipid to simulate nontumorigenic cell membranes, namely 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine. We noted significant changes in the surface pressure-area isotherms, with a noticeable shift towards larger areas, which was lower than expected for ideal mixtures, indicating monolayer condensation. Furthermore, the viscoelastic properties of the interfacial film demonstrated an increase in both the elastic and viscous parameters for the mixed film. We also observed structural alterations using vibrational spectroscopy, which revealed an increase in the all-trans to gauche conformers ratio. This confirmed the stiffening effect of the prodrug on the lipid monolayer. In summary, this study indicates that this lipophilic prodrug significantly impacts the lipid monolayer's thermodynamic, rheological, electrical, and molecular characteristics. This information is crucial for understanding how the drug interacts with specific sites on the cellular membrane. It also has implications for drug delivery, as the drug's passage into the cytosol may involve traversing the lipid bilayer.


Assuntos
Membrana Celular , Pró-Fármacos , Uridina , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Uridina/química , Uridina/farmacologia , Fosfatidilserinas/química , Termodinâmica , Propriedades de Superfície , Viscosidade , Elasticidade
2.
Bioorg Chem ; 147: 107408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678776

RESUMO

This study aimed to assess the antiprotozoal efficacy of dicentrine, an aporphine alkaloid isolated from Ocotea puberula, against amastigote forms of Leishmania (L.) infantum. Our findings reveal that dicentrine demonstrated a notable EC50 value of 10.3 µM, comparable to the positive control miltefosine (EC50 of 10.4 µM), while maintaining moderate toxicity to macrophages (CC50 of 51.9 µM). Utilizing an in silico methodology, dicentrine exhibited commendable adherence to various parameters, encompassing lipophilicity, water solubility, molecule size, polarity, and flexibility. Subsequently, we conducted additional investigations to unravel the mechanism of action, employing Langmuir monolayers as models for protozoan cell membranes. Tensiometry analyses unveiled that dicentrine disrupts the thermodynamic and mechanical properties of the monolayer by expanding it to higher areas and increasing the fluidity of the film. The molecular disorder was further corroborated through dilatational rheology and infrared spectroscopy. These results contribute insights into the role of dicentrine as a potential antiprotozoal drug in its interactions with cellular membranes. Beyond elucidating the mechanism of action at the plasma membrane's external surface, our study sheds light on drug-lipid interface interactions, offering implications for drug delivery and other pharmaceutical applications.


Assuntos
Antiprotozoários , Antiprotozoários/farmacologia , Antiprotozoários/química , Relação Estrutura-Atividade , Membrana Celular/efeitos dos fármacos , Aporfinas/farmacologia , Aporfinas/química , Relação Dose-Resposta a Droga , Lauraceae/química , Estrutura Molecular , Leishmania infantum/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Animais
3.
Artigo em Inglês | MEDLINE | ID: mdl-38334123

RESUMO

Incorporating enzymes into nanostructured supercapacitor devices represents a groundbreaking advancement in energy storage. Enzyme catalysis using nanomaterials enhances performance, efficiency, and stability by facilitating precise charge transfer, while the nanostructure provides a high surface area and improved conductivity. This synergy yields eco-friendly, high-performance energy storage solutions crucial for diverse applications, from portable electronics to renewable energy systems. In this study, we harnessed the versatility of Langmuir-Blodgett films to create meticulously organized thin films with specific enzyme properties, coupled with carbon nanotubes, to develop biosupercapacitors. Langmuir monolayers were constructed with stearic acid, carbon nanotubes, and galactose oxidase. Following comprehensive characterization using tensiometric, rheological, morphological, and spectroscopic techniques, the monolayers were transferred to solid supports, yielding Langmuir-Blodgett films. These films exhibited superior performance, with persisting enzyme activity. However, increasing film thickness did not enhance enzymatic activity values, indicating a surface-driven process. Subsequently, we explored the electrochemical properties of the films, revealing stability compatible with supercapacitor applications. The introduction of carbon nanotubes demonstrated a higher capacitance, indicating the potential viability of the films for energy storage applications.

4.
Colloids Surf B Biointerfaces ; 234: 113747, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219639

RESUMO

This study investigates the interaction between sakuranetin, a versatile pharmaceutical flavonoid, and monolayers composed of unsaturated phospholipids, serving as a surrogate for cell membranes. The phospholipids were 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We conducted a series of experiments to comprehensively investigate this interaction, including surface pressure assessments, Brewster angle microscopy (BAM), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Our findings unequivocally demonstrate that sakuranetin interacts with these phospholipids, expanding the monomolecular films. Notably, regarding POPC, the presence of sakuranetin led to a reduction in stability and a decline in surface elasticity, which can likely be attributed to intricate molecular rearrangements at the interface. The visual evidence of aggregations in BAM images reinforces the interactions substantiated by PM-IRRAS, highlighting sakuranetin's interaction with the polar and nonpolar regions of POPC. However, it is worth noting that these aggregations do not appear to contribute significantly to the viscosity of the mixed film, and our investigations did not reveal any substantial hysteresis. In contrast, when examining POPE, we observed a minor reduction in thermodynamic stability, indicative of fewer rearrangements within the monolayer. This notion was further reinforced by the limited presence of aggregations in the BAM images. Sakuranetin also increased the rigidity of the lipid monolayer; nevertheless, the monolayer remained predominantly elastic, facilitating easy re-spreading on the surface, especially for the first lipid. PM-IRRAS analysis unveiled interactions between sakuranetin and POPE's polar and nonpolar segments, compellingly explaining the observed monolayer expansion. Taken together, our data suggest that sakuranetin was more effectively incorporated into the monomolecular layer of POPE, indicating that membranes comprised of POPC might exhibit a greater degree of interaction in the presence of this pharmacologically active compound.


Assuntos
Fosfolipídeos , Fitoalexinas , Água , Água/química , Propriedades de Superfície , Fosfolipídeos/química , Flavonoides
5.
Chem Phys Lipids ; 258: 105363, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042456

RESUMO

Cytosporone-B was isolated from fungi and incorporated in models of tumorigenic cell membranes using palmitoyloleoylglycerophosphoserine (POPS) and dipalmitoyl glycerophosphoserine (DPPS) lipids. While for DPPS, the compound condensed the monolayer and decreased the surface compressional modulus, it expanded and kept the compressional modulus for POPS. Hysteresis for compression-expansion cycles was more sensitive for POPS than for DPPS, while a high degree of destabilization was observed for POPS. As observed with infrared spectroscopy and Brewster angle microscopy, specific changes were selective regarding molecular organization and morphology. Atomic force microscopy for transferred monolayers as Langmuir-Blodgett films also confirmed such specificities. We believe these data can help understand the mechanism of action of bioactive drugs in lipid interfaces at the molecular level.


Assuntos
Lipídeos , Serina , Serina/análise , Propriedades de Superfície , Membrana Celular/química , Lipídeos/análise
6.
Colloids Surf B Biointerfaces ; 229: 113465, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37490807

RESUMO

5SO3H-8-hydroxyquinoline coordinated to Europium (Eu-5SO3-HQ) was incorporated in biomembrane models using Langmuir monolayers. Dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylserine (DPPS) were employed, representing mammalian cells and dioctadecyldimethylammonium bromide (DODAB) as a positively charged lipid to study the contrast with negatively charged lipids. Tensiometric, rheological and spectroscopic techniques were employed to characterize Eu-5SO3-HQ- lipid monolayer interactions. The complex condenses all the monolayer indicating interactions with the lipids' polar heads, but with distinctive effects on the mechanical and rheological properties. While the complex decreases the compression and elastic moduli of DPPC and DPPS monolayers, it increases for DODAB, also decreasing its lateral viscosity. Infrared spectroscopy shows that the interaction of Eu-5-SO3-HQ alters the ordering of the lipids' alkyl chains, impacting the monolayer's molecular packing. These results show that the interaction of Eu-5SO3-HQ with lipid monolayers at the air-water is modulated by the composition of the polar head, which can be supportive in the preparation of nanodevices for molecular probing.


Assuntos
Európio , Quinolinas , Água/química , 1,2-Dipalmitoilfosfatidilcolina/química , Compostos de Amônio Quaternário/química , Propriedades de Superfície
7.
Biochim Biophys Acta Biomembr ; 1865(7): 184184, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301246

RESUMO

As part of our ongoing studies involving the discovery of new natural prototypes with antiprotozoal activity against Trypanosoma cruzi from Brazilian plant species, the chromatographic fractionation of hexane extract from leaves of Nectandra barbellata afforded one new pseudo-disesquiterpenoid, barbellatanic acid. The structure of this compound was elucidated by NMR and HR-ESIMS data analysis. Barbellatanic acid displayed a trypanocidal effect with IC50 of 13.2 µM to trypomastigotes and no toxicity against NCTC cells (CC50 > 200 µM), resulting in an SI value higher than 15.1. The investigation of the lethal mechanism of barbellatanic acid in trypomastigotes, using both fluorescence microscopy and spectrofluorimetric analysis, revealed a time-dependent permeation of the plasma membrane. Based on these results, this compound was incorporated in cellular membrane models built with lipid Langmuir monolayers. The interaction of barbellatanic acid with the models was inferred by tensiometric, rheological, spectroscopical, and morphological techniques, which showed that this compound altered the thermodynamic, viscoelastic, structural, and morphological properties of the film. Taking together, these results could be employed when this prodrug interacts with lipidic interfaces, such as protozoa membranes or liposomes for drug delivery systems.


Assuntos
Antiprotozoários , Tripanossomicidas , Trypanosoma cruzi , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Antiprotozoários/farmacologia , Membrana Celular , Folhas de Planta
8.
Biophys Chem ; 296: 106975, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842251

RESUMO

Biseugenol (1), a neolignan with antiprotozoal activity against Trypanosoma cruzi, was partially methylated, and the compound obtained - methyl biseugenol (2) - had its activity evaluated against the extracellular (trypomastigotes) and intracellular (amastigotes) forms of T. cruzi. It was observed that both compounds 1 and 2 exhibited similar effects against trypomastigotes (IC50 of 11.7 and 16.2 µM, respectively), whereas compound 2 displayed higher activity against amastigotes (IC50 = 8.2 µM) in comparison with biseugenol (IC50 = 15.4 µM). Additionally, reduced toxicity against NCTC cells for compound 2 was observed (CC50 > 200 µM), differently from compound 1 with CC50 = 58.0 µM. Aiming to understand better the molecular mechanism of the biological action of compound 2, the prodrug was incorporated into cellular membrane models constituted of Langmuir monolayers of the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG). The lipid-drug interaction was inferred through tensiometry, surface potential, infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The prodrug expanded DPPC and DPPG monolayers and condensed DPPE ones, as well as presented characteristic behaviors regarding the chemical structure of the lipid considering expansion-compression curves, surface potential-area isotherms, and stability of previously compressed monolayers to relevant-biological surface pressures. PM-IRRAS indicated a molecular disorder for DPPC and DPPS alkyl chains in the presence of the drug. BAM revealed the presence of domains in the DPPG and DPPE monolayers, which was probably induced by the prodrug. These data suggest, in general, that the lipid composition modulates the interaction of compound 2, whose results are expected to correlate to its trypanocidal activity, which involves the plasma membrane of T. cruzi as the primary target, i.e., the first barrier that the compound should encounter to interact with the microorganism.


Assuntos
Pró-Fármacos , Metilação , Membrana Celular/química , 1,2-Dipalmitoilfosfatidilcolina/química , Propriedades de Superfície
9.
Colloids Surf B Biointerfaces ; 222: 113045, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446237

RESUMO

Lysicamine, an alkaloid with tumorigenic activity, was incorporated in cell membrane models made of lipid Langmuir monolayers. Dipalmitoylphosphocholine (DPPC), dioleoylphosphocholine (DOPC), and palmitoyloleoylcholine (POPC) represented non-tumorigenic cell membranes, and dipalmitoylphosphoserine (DPPS), dioleoylphosphoserine (DOPS), and palmitoyloleoylserine (POPS), tumorigenic ones. The monolayers were characterized by tensiometry, infrared spectroscopy, and Brewster Angle Microscopy (BAM). No significant shifts of the isotherms were observed for the saturated lipids (DPPC and DPPS), while for the others (DOPC, POPS, DOPS, and POPS), more significant changes were observed not only in the compression isotherms but also in the surface pressure-time curve for pre-compressed monolayers. The molecular organization, as well as the morphology of the drug-lipid monolayers, could be inferred with infrared spectroscopy and BAM. While the first revealed that the alkyl chain ordering changed upon lysicamine incorporation, the second showed how the drug could distinctly change the state of aggregation of molecular domains at the air-water interface. In conclusion, lysicamine could interact distinctly with each lipid at the air-water interface, showing the dependence not only on the lipid polar groups but also on the level of unsaturation of the alkyl chains.


Assuntos
Fosfatidilgliceróis , Água , Água/química , Propriedades de Superfície , Membrana Celular/química , 1,2-Dipalmitoilfosfatidilcolina/química
10.
Biophys Chem ; 293: 106947, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566720

RESUMO

Knowing how a bioactive compound interacts with cell membranes is important to understand its effect at the molecular level. In this sense, this work aimed to study the interaction of lysicamine, an alkaloid with action against lung cancer cell lines, with lipid monolayers as cell membrane models. We employed two lipid mixtures: the first composed of 35% DOPC, 30% DOPE, 20% sphingomyelin, and 15% cholesterol as healthy cell membranes models (MM1), and the second replacing DOPC with DOPS as cancer cells models (MM2). The interaction of lysicamine with the monolayers was evaluated using tensiometry, Brewster angle microscopy (BAM), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Lysicamine had interfacial effects in both membrane models. For MM 1, it expanded the lipid monolayer and changed the interfacial rheological properties, increasing the in-plane elasticity of the films. PM-IRRAS spectra suggested a higher conformational disorder of the alkyl chains of the lipids. For MM 2, lysicamine also shifted the isotherms to higher areas, expanding the monolayers, but with no significant alteration in their interfacial rheological properties. PM-IRRAS spectra also suggested higher disorder in the orientation of the lipid alkyl chains upon lysicamine incorporation. For both models, BAM did not show alteration in interfacial aggregation upon drug incorporation. In conclusion, changes in some interfacial properties of membrane models caused by lysicamine depend on the monolayer composition, which can be associated with its bioactivity in cellular membranes.


Assuntos
Esfingomielinas , Água , Água/química , Espectrofotometria Infravermelho , Membrana Celular , Esfingomielinas/química , Propriedades de Superfície
11.
Biochim Biophys Acta Biomembr ; 1864(11): 184035, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987463

RESUMO

Dehydrodieugenol, a neolignan isolated from the Brazilian plant Nectandra leucantha (Lauraceae) with reported antiprotozoal and anticancer activity, was incorporated in Langmuir monolayers of selected lipids as cell membrane models, aiming to comprehend its action mechanism at the molecular level. The interaction of this compound with the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG) was inferred through tensiometry, infrared spectroscopy, and Brewster angle microscopy. The interactions had different effects depending on the chemical nature of the lipid polar head, with expansion for DPPC monolayers, condensation for DPPE, and expansion (at low surface pressures) followed by the overlap of the isotherms (at high surface pressure values) for DPPS and DPPG. Effects caused by dehydrodieugenol in the negatively charged lipids were distinctive, which was also reflected in the hysteresis assays, surface potential-area isotherms, and rheological measurements. Infrared spectroscopy indicated that the drug interaction with the monolayer affects not only the polar groups, but also the acyl lipid chains for all lipids. These results pointed to the fact that the interaction of the drug with lipid monolayers at the air-water interface is modulated by the lipid composition, mainly considering the polar head of the lipids, as well as the hydrophobicity of the lipids and the drug. As negatively charged lipids pointed to distinctive interaction, we believe this can be related to the antiprotozoal and anticancer properties of the compound.


Assuntos
Lauraceae , Lignanas , Membrana Celular/química , Eugenol/análogos & derivados , Eugenol/análise , Lignanas/análise
12.
Colloids Surf B Biointerfaces ; 216: 112546, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35588685

RESUMO

Sakuranetin, a natural compound with activity in lipidic biointerfaces, was isolated from Baccharis retusa and studied with two models of lipid membranes: Langmuir monolayers and Molecular Simulation. For that, the mammalian lipid DPPC was chosen. Sakuranetin condensed the monolayers at high surface pressures, decreased the surface compressional modulus, reduced the molecular order of the acyl chains (diminution of all-trans/gauche conformers ratio), and increased the heterogeneity of the interface, forming aggregates. Molecular simulation data gave information on the bioactive compound's most favorable thermodynamic positions along the lipid monolayer, which was the lipid-air interface. These combined results lead to the conclusion that this lipophilic compound may interact with the lipidic layers, preferentially at the lipid-air interface, to minimize the free energy, and reaches this conformation disturbing the thermodynamic, structural, mechanical, rheological, and morphological properties of the well-packed DPPC monolayer.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Lipídeos , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química , Flavonoides , Propriedades de Superfície , Termodinâmica , Água/química
13.
Colloids Surf B Biointerfaces ; 216: 112530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35569254

RESUMO

Pectin, a polysaccharide with potential bioactivity, was inserted in the aqueous subphase of monolayers of the selected lipids DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine), representing mammalian and bacterial membranes, respectively. Pectin condensed both monolayers but made the DPPC monolayer more fluid, while for DPPE, it made its monolayer more rigid, as detected with dynamic interfacial rheology. Complementary data using surface potential, infrared spectroscopy, and Brewster angle microscopy also showed distinctive effects of pectin on DPPE and DPPC. We believe these data can be correlated with the action of this polysaccharide with biological lipidic surfaces with different polar heads, which may be relevant, generally speaking, to understanding the molecular mechanism of this bioactive compound for pharmaceutical purposes.


Assuntos
Pectinas , Água , 1,2-Dipalmitoilfosfatidilcolina/química , Pectinas/farmacologia , Fosfatidiletanolaminas/química , Reologia , Espectrofotometria Infravermelho , Propriedades de Superfície , Água/química
14.
Colloids Surf B Biointerfaces ; 215: 112477, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35381500

RESUMO

The interaction of Dengue fusion peptide (FLAg) in selected lipid Langmuir monolayers was characterized with surface pressure-area isotherms and infrared spectroscopy to investigate the role of the membrane charge and molecular organization in the peptide-lipid binding. Surface pressure-area isotherms were employed to analyze the thermodynamic and mechanical properties of the FLAg-lipid monolayer, showing that charged lipid monolayers showed different peptide adsorption patterns for an optimized peptide concentration (maximum membrane adsorption). Polarization modulation infrared reflection-absorption spectroscopy pointed out that incorporating FLAg changed the dipole orientations for the lipid polar head groups, as confirmed in PG-containing monolayers. Also, FLAg reorients the lipid film when it interacts with the phosphate and choline groups. Finally, analysis of the 310-helix bands suggests that FLAg assumes a configuration as a hairpin, an essential premise for the beginning of the membrane fusion process.


Assuntos
Dengue , Fosfolipídeos , Humanos , Peptídeos , Fosfolipídeos/química , Espectrofotometria Infravermelho , Propriedades de Superfície , Água/química
15.
Bioorg Chem ; 124: 105814, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461015

RESUMO

The present work evaluated the antiprotozoal activity of isolinderanolide E, isolated from the Brazilian plant Nectandra oppositifolia, against promastigote forms of Leishmania (Leishmania) amazonensis. The compound exhibited an EC50 value of 20.3 µM, similar to the positive control miltefosine (IC50 of 19.4 µM), and reduced toxicity to macrophages (CC50 > 200 µM). Based on these results, Langmuir monolayers of two unsaturated lipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were employed as a model of mammalian and parasite membranes, respectively, to study the interaction of isolinderanolide E at a molecular level. The films were characterized with tensiometry (surface pressure-area isotherms and surface pressure-time curves), infrared spectroscopy, and Brewster angle microscopy (BAM). This compound changed the profile of the isotherms leading to fluid DOPC and DOPE monolayers, which were not able to attain rigid states even with compression. Infrared spectroscopy showed that the bioactive compound decreases the trans/gauche ratio conformers related to the molecular conformational disorder. BAM showed the formation of specific aggregates upon drug incorporation. In conclusion, isolinderanolide E changes the thermodynamic, mechanical, structural, and morphological characteristics of the monolayer of these unsaturated lipids, which may be essential to understand the action at the molecular level bioactives in biointerfaces.


Assuntos
Antiprotozoários , Lauraceae , Animais , Antiprotozoários/farmacologia , Membrana Celular , Lipídeos/análise , Mamíferos , Propriedades de Superfície , Termodinâmica
16.
J Colloid Interface Sci ; 616: 701-708, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247808

RESUMO

This study investigates the interfacial behavior of the proteinase K enzyme at air-water interface. Adsorption of enzyme on the surface was induced using saline subphase. The surface packing and stability of the enzyme was investigated using of surface pressure-area (π-A) and surface potential-area (ΔV-A) isotherms. Proteinase K enzyme forms film at air-aqueous interface and demonstrates good stability as shown through compression-decompression cycle experiments. To characterize the surface assembly morphology of the interfacial enzymes UV-vis and fluorescence spectroscopic techniques were used. The data revealed that the enzyme Langmuir monolayer has good homogeneity with no evidence of aggregates during compression. The secondary structure of the enzyme at interface was determined to be α-helix using p-polarized infrared-reflection absorption spectroscopy. This was confirmed through Circular dichroism spectra of the enzyme Langmuir-Blodgett (LB) film which showed that the major conformation present were α-helices.


Assuntos
Água , Endopeptidase K , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Propriedades de Superfície , Água/química
17.
Chem Rev ; 122(6): 6459-6513, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35113523

RESUMO

The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.


Assuntos
Água , Membrana Celular , Água/química
18.
Langmuir ; 38(7): 2372-2378, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143210

RESUMO

In this paper, graphene oxide was incorporated in penicillinase-lipid Langmuir monolayers and transferred to solid supports as Langmuir-Blodgett (LB) films so that the enzyme catalytic properties could be evaluated. Adsorption of penicillinase and graphene oxide on dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by tensiometry, vibrational spectroscopy, and Brewster angle microscopy. The LB films were characterized by quartz crystal microbalance, infrared spectroscopy, luminescence spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the supramolecular device nanostructured as ultrathin films was essayed as an optical sensor device. The presence of graphene oxide in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks. These results may be related not only to the molecular architecture provided by the film but also to the synergism between the compounds on the active layer, leading to a molecular architecture that allowed a fast analyte diffusion owing to a suitable molecular accommodation which also preserved the penicillinase activity. This work then demonstrates the feasibility of employing LB films composed of lipids, graphene oxide, and enzymes as optical devices for biosensing applications as a proof-of-concept experiment.


Assuntos
Grafite , Penicilinase , Técnicas Biossensoriais , Ativação Enzimática/efeitos dos fármacos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/efeitos dos fármacos , Grafite/farmacologia , Lipídeos/química , Penicilinase/efeitos dos fármacos , Propriedades de Superfície
19.
Biochim Biophys Acta Biomembr ; 1863(10): 183690, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224703

RESUMO

A long-tail lactone, named isolinderanolide E, was obtained from Nectandra oppositifolia and incorporated in Langmuir monolayers of dipalmitoyl-phosphoethanolamine (DPPE) as a model of microbial membranes. The compound was dissolved in chloroform and mixed with DPPE to provide mixed solutions spread on the air-water interface. After solvent evaporation, mixed monolayers were formed, and surface pressure-area isotherms, dilatational rheology, Brewster angle microscopy (BAM), and infrared spectroscopy were employed to characterize the prodrug-membrane interactions. Isolinderanolide E expanded DPPE monolayers, denoting repulsive interactions. At 30 mN/m, the monolayer presented higher viscoelastic and in-plane elasticity parameters and an increased ratio of all-trans/gauche conformers of the alkyl chains, confirming molecular order. Morphology of the monolayer was analyzed by BAM, which revealed a more homogeneous distribution of Isolinderanolide E along the DPPE monolayer than the prodrug directly spread at the interface, which tends to aggregate. A molecular model proposing the molecular orientation of the amphiphilic drug is presented and explained by the distortion of the alkyl chains as well as by viscoelastic changes. In conclusion, the prodrug changes the thermodynamic, rheological, morphological, and structural properties of the DPPE monolayer, which may be essential to understand, at the molecular level, the action of bioactives in selected membrane models.


Assuntos
Anti-Infecciosos/metabolismo , Lactonas/metabolismo , Lauraceae/metabolismo , Membranas Artificiais , Modelos Químicos , Microscopia/métodos , Éteres Fenílicos/metabolismo , Reologia , Análise Espectral/métodos , Termodinâmica
20.
Biophys Chem ; 277: 106638, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34111703

RESUMO

In this paper, we studied how different hydrophilicity degrees of the polar groups of the lipids dipalmitoylphosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) influence the interaction of the antibiotic peptide vancomycin (VC), affecting the physicochemical properties of the monolayers, including thermodynamic, rheological, structural and morphological ones. Lipid Langmuir monolayers were prepared at air-water interfaces with VC aqueous solution as subphase and characterized with tensiometry, Brewster angle microscopy, infrared spectroscopy, dilatational, and interfacial shear rheology. The presence of PC or PE groups as polar head groups of the phospholipid monolayers modulated the interaction of VC adsorbing from the aqueous subphase since for DPPC, vancomycin condenses the monolayer, making it less stable, fluid, and more disordered. In contrast, for DPPE, vancomycin expands the monolayer, making it more stable, keeping the compressibility, and leading to the formation of interfacial aggregates, which are not observed for DPPC. We concluded thatelectrostatic interactions induced the insertion of the peptide into the polar heads of the monolayers (DPPE), while hydrophobic interactions, in addition to ion-dipole interactions, induced the adsorption of the peptide onto the polar head of the monolayers (DPPC).


Assuntos
Água , Elasticidade , Fosfolipídeos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA