Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33723-33736, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744835

RESUMO

Water solutions treated by cold atmospheric plasmas (CAPs) currently stand out in the field of cancer treatment as sources of exogenous blends of reactive oxygen and nitrogen species (RONS). It is well known that the balance of RONS inside both eukaryotic and prokaryotic cells is directly involved in physiological as well as pathological pathways. Also, organic molecules including phenols could exert promising anticancer effects, mostly attributed to their pro-oxidant ability in vitro and in vivo to generate RONS like O2-, H2O2, and a mixture of potentially cytotoxic compounds. By our vision of combining the efficacy of plasma-produced RONS and the use of organic molecules, we could synergistically attack cancer cells; yet, so far, this combination, to the best of our knowledge, has been completely unexplored. In this study, l-tyrosine, an amino acid with a phenolic side chain, is added to a physiological solution, often used in clinical practice (SIII) to be exposed to plasma. The efficacy of the gas plasma-oxidized SIII solution, containing tyrosine, was evaluated on four cancer cell lines selected from among tumors with poor prognosis (SHSY-5Y, MCF-7, HT-29, and SW-480). The aim was to induce tumor toxicity and trigger apoptosis pathways. The results clearly indicate that the plasma-treated water solution (PTWS) reduced cell viability and oxygen uptake due to an increase in intracellular ROS levels and activation of apoptosis pathways in all investigated cancer cells, which may be related to the activation of the mitochondrial-mediated and p-JNK/caspase-3 signaling pathways. This research offers improved knowledge about the physiological mechanisms underlying cancer treatment and a valid method to set up a prompt, adequate, and effective cancer treatment in the clinic.

2.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175170

RESUMO

Agronomic practices and the winemaking process lead to the production of considerable quantities of waste and by-products. These are often considered waste with negative effects on environmental sustainability. However, vine shoots and grape stalks can be reused, representing a potential source of xylo-oligosaccharides and polyphenols. In this context, the purpose of this work was to obtain enriched extracts using three different autohydrolysis treatments with (i) H2O, (ii) H2O:EtOH, and (iii) H2O:Amberlyst. The obtained extracts were characterized by their xylo-oligosaccharide and polyphenol profiles using LC-MS techniques. The use of ethanol during autohydrolysis allowed for greater extraction of xylan-class compounds, especially in vine shoot samples, while an increase in antioxidant activity (128.04 and 425.66 µmol TE/g for ABTS and DPPH, respectively) and in total phenol content (90.92 mg GAE/g) was obtained for grape stalks.


Assuntos
Vitis , Vitis/química , Fenóis , Oligossacarídeos/química , Polifenóis , Extratos Vegetais/química , Antioxidantes/farmacologia , Etanol
3.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987281

RESUMO

The total amount of cellulose from paper, wood, food, and other human activity waste produced in the EU is in the order of 900 million tons per year. This resource represents a sizable opportunity to produce renewable chemicals and energy. This paper reports, unprecedently in the literature, the usage of four different urban wastes such as cigarette butts, sanitary pant diapers, newspapers, and soybean peels as cellulose fonts to produce valuable industrial intermediates such as levulinic acid (LA), 5-acetoxymethyl-2-furaldehyde (AMF), 5-(hydroxymethyl)furfural (HMF), and furfural. The process is accomplished by the hydrothermal treatment of cellulosic waste using both Brønsted and Lewis acid catalysts such as CH3COOH (2.5-5.7 M), H3PO4 (15%), and Sc(OTf)3 (20% w:w), thus obtaining HMF (22%), AMF (38%), LA (25-46%), and furfural (22%) with good selectivity and under relatively mild conditions (T = 200 °C, time = 2 h). These final products can be employed in several chemical sectors, for example, as solvents, fuels, and for new materials as a monomer precursor. The characterization of matrices was accomplished by FTIR and LCSM analyses, demonstrating the influence of morphology on reactivity. The low e-factor values and the easy scale up render this protocol suitable for industrial applications.

4.
Chemistry ; 28(65): e202202350, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35997238

RESUMO

A novel Pd-catalysed oxidative coupling between benzoic acids and vinylarenes or acrylates to furnish isocoumarins and phthalides is reported. The reaction proceeds smoothly in molten tetrabutylammonium acetate via a selective C-H bond activation, with very low percentage of ligand-free palladium acetate as the catalyst, under atmospheric pressure of oxygen. Sub-stoichiometric amount of copper acetate is also required as a reoxidant for the palladium.


Assuntos
Líquidos Iônicos , Paládio , Paládio/química , Isocumarinas/química , Catálise , Acetatos
5.
Sci Rep ; 12(1): 11378, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790782

RESUMO

Photoreduction of CO2 with sunlight to produce solar fuels, also named artificial photosynthesis, is considered one of the most attractive strategies to face the challenge of reducing greenhouse gases and achieving climate neutrality. Following an approach in line with the principles of the circular economy, the low-cost catalytic system (1) based on an industrial by-product such as steel slag was assessed, which was properly modified with nanostructured palladium on its surface in order to make it capable of promoting the conversion of CO2 into methanol and hydrogen through a two-stage process of photoreduction and thermal conversion having formic acid as the intermediate. Notably, for the first time in the literature steel slag is used as photoreduction catalyst.


Assuntos
Hidrogênio , Metanol , Dióxido de Carbono , Fotossíntese , Aço , Água
6.
Molecules ; 26(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577063

RESUMO

The aim of the present work is the synthesis and characterization of new perfluorinated monomers bearing, similarly to Nafion®, acidic groups for proton transport for potential and future applications in proton exchange membrane (PEM) fuel cells. To this end, we focused our attention on the synthesis of various molecules with (i) sufficient volatility to be used in vacuum polymerization techniques (e.g., PECVD)), (ii) sulfonic, phosphonic, or carboxylic acid functionalities for proton transport capacity of the resulting membrane, (iii) both aliphatic and aromatic perfluorinated tags to diversify the membrane polarity with respect to Nafion®, and (iv) a double bond to facilitate the polymerization under vacuum giving a preferential way for the chain growth of the polymer. A retrosynthetic approach persuaded us to attempt three main synthetic strategies: (a) organometallic Heck-type cross-coupling, (b) nucleophilic displacement, and (c) Wittig-Horner reaction (carbanion approach). Preliminary results on the plasma deposition of a polymeric film are also presented. The variation of plasma conditions allowed us to point out that the film prepared in the mildest settings (20 W) shows the maximum monomer retention in its structure. In this condition, plasma polymerization likely occurs mainly by rupture of the π bond in the monomer molecule.

7.
Sci Rep ; 11(1): 15775, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349213

RESUMO

Unprecedented in the literature, levulinic acid (LA), one of the top value-added intermediates of chemical industry, is obtained from cigarette butts as cellulose feedstock by means of a one-pot hydrothermal process carried out at 200 °C for 2 h and catalysed by phosphoric acid. The protocol avoids the use of more aggressive and toxic H2SO4 and HCl, that are generally employed on several cellulose sources (e.g. sludge paper), thus minimizing corrosion phenomena of plants. Neither chemical pre-treatment of butts nor specific purification procedure of LA are required. Notably, by simply modifying acid catalyst (e.g. using CH3COOH), another top value-added fine chemical such as 5-hydroxymethylfuraldehyde (HMF) is obtained, thus widening the scope of the method. Being cigarette filters a waste available in quantities of megatonnes per year, they represent an unlimited at no cost source of cellulose, thus enabling the up-scale to an industrial level of LA production.

8.
Polymers (Basel) ; 13(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498668

RESUMO

Curcumin (CM) is a natural polyphenol wellknown for its antioxidant and pharmaceutical properties, that can represent a renewable alternative to bisphenol A (BPA) for the synthesis of biobased polycarbonates (PC). In the presented strategy, preparation of the CMbased PC was coupled with chemical recycling of the fossilbased BPA polycarbonate (BPAPC) conducting a twosteps transpolymerization that replaces BPA monomer with CM or its tetrahydrogenated colorless product (THCM). In the first step of synthetic strategy, depolymerization of commercial BPAPC was carried out with phenol as nucleophile, according to our previous procedure based on zinc derivatives and ionic liquids as catalysts, thus producing quantitatively diphenyl carbonate (DPC) e BPA. In the second step, DPC underwent a melt transesterification with CM or THCM monomers affording the corresponding biobased polycarbonates, CMPC and THCMPC, respectively. THCM was prepared by reducing natural bisphenol with cyclohexene as a hydrogen donor and characterized by 1H-NMR and MS techniques. Polymerization reactions were monitored by infrared spectroscopy and average molecular weights and dispersity of the two biobased polymers THCMPC and CMPC were determined by means of gel permeation chromatography (GPC). Optical properties of the prepared polymers were also measured.

9.
ACS Omega ; 4(7): 12286-12292, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460345

RESUMO

Biowaxes synthesized from vegetable fatty acids are an alternative to petrochemical paraffins. A simple way of access to these compounds involves Fisher-type esterification of long-chain acids and alcohols under acidic conditions, but long reaction times and harsh conditions are commonly required. In this study, for the first time in the literature, biowax esters are prepared under flow conditions cutting dramatically both reaction times (from 12 h to 30 min) and temperature conditions, with respect to batch procedures (from 90-120 °C to 55 °C). This approach brings substantial improvements to the biowax synthesis process from an economic and environmental point of view, thus making the method up-scalable to the industrial level.

10.
Materials (Basel) ; 11(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461484

RESUMO

Anatase (TiO2) and multiwalled carbon nanotubes bearing polyethylenimine (PEI) anchored on their surface were hybridized in different proportions according to a sol-gel method. The resulting nanocomposites (TiO2@PEI-MWCNTs), characterized by BET, XRD, XPS, SEM, and UV techniques, were found efficient catalysts for CO2 photoreduction into formic and acetic acids in water suspension and under visible light irradiation. PEI-grafted nanotubes co-catalysts are believed to act as CO2 activators by forming a carbamate intermediate allowing to accomplish the first example in the literature of polyamines/nanotubes/TiO2 mediated CO2 photoreduction to carboxylic acids.

11.
Nanomaterials (Basel) ; 8(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385761

RESUMO

Silicon nanowires (SiNWs) decorated by pulsed laser ablation with gold or copper nanoparticles (labeled as AuNPs@SiNWs and CuNPs@SiNWs) were investigated for their catalytic properties. Results demonstrated high catalytic performances in the Caryl-N couplings and subsequent carbonylations for gold and copper catalysts, respectively, that have no precedents in the literature. The excellent activity, attested by the very high turn over number (TON) values, was due both to the uniform coverage along the NW length and to the absence of the chemical shell surrounding the metal nanoparticles (MeNPs). A high recyclability was also observed and can be ascribed to the strong covalent interaction at the Me-Si interface by virtue of metal "silicides" formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA