Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(46): e202310129, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37772828

RESUMO

Here, we report the development of cobalt(I)-catalyzed regioselective allylic alkylation reactions of tertiary allyl carbonates with 1,3-dicarbonyl compounds. A family of well-defined tetrahedral cobalt(I) complexes bearing commercially available bidentate bis(phosphine) ligands [(P,P)Co(PPh3 )Cl] are synthesized and explored as catalysts in allylic alkylation reactions. The catalyst [(dppp)Co(PPh3 )Cl] (dppp=1,3-Bis(diphenylphosphino)propane) enables the alkylation of a large variety of tertiary allyl carbonates with high yields and excellent regioselectivity for the branched product. Remarkably, this methodology is selective for the activation of tertiary allyl carbonates even in the presence of secondary allyl carbonates. This contrasts with the selectivity observed in cobalt-catalyzed allylic alkylations enabled by visible light photocatalysis. Mechanistic insights by means of experimental and computational investigations support a Co(I)/Co(III) catalytic cycle.

2.
Chem Sci ; 13(15): 4270-4282, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35509462

RESUMO

A catalytic system based on earth-abundant elements that efficiently hydrogenates aryl olefins using visible light as the driving-force and H2O as the sole hydrogen atom source is reported. The catalytic system involves a robust and well-defined aminopyridine cobalt complex and a heteroleptic Cu photoredox catalyst. The system shows the reduction of styrene in aqueous media with a remarkable selectivity (>20 000) versus water reduction (WR). Reactivity and mechanistic studies support the formation of a [Co-H] intermediate, which reacts with the olefin via a hydrogen atom transfer (HAT). Synthetically useful deuterium-labelled compounds can be straightforwardly obtained by replacing H2O with D2O. Moreover, the dual photocatalytic system and the photocatalytic conditions can be rationally designed to tune the selectivity for aryl olefin vs. aryl ketone reduction; not only by changing the structural and electronic properties of the cobalt catalysts, but also by modifying the reduction properties of the photoredox catalyst.

3.
Angew Chem Int Ed Engl ; 61(22): e202201699, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285116

RESUMO

We disclose a new reactivity mode for electrophilic cyano λ3 -iodanes as group transfer one-electron oxidants to synthesize FeIII and FeIV cyanide complexes. The inherent thermal instability of high-valent FeIV compounds without π-donor ligands (such as oxido (O2- ), imido (RN2- ) or nitrido (N3- )) makes their isolation and structural characterization a very challenging task. We report the synthesis of an FeIV cyanide complex [(N3 N')FeCN] (4) by two consecutive single electron transfer (SET) processes from FeII precursor [(N3 N')FeLi(THF)] (1) with cyanobenziodoxolone (CBX). The FeIV complex can also be prepared by reaction of [(N3 N')FeIII ] (3) with CBX. In contrast, the oxidation of FeII with 1-cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (CDBX) enables the preparation of FeIII cyanide complex [(N3 N')FeIII (CN)(Li)(THF)3 ] (2-LiTHF ). Complexes 4 and 2-LiTHF have been structurally characterized by single crystal X-ray diffraction and their electronic structure has been examined by Mössbauer, EPR spectroscopy, and computational analyses.


Assuntos
Elétrons , Iodo , Cianetos , Compostos Férricos , Compostos Ferrosos/química , Indicadores e Reagentes , Oxidantes
4.
Angew Chem Int Ed Engl ; 58(15): 4869-4874, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707782

RESUMO

The chemical inertness of abundant and commercially available alkyl chlorides precludes their widespread use as reactants in chemical transformations. Presented in this work is a metallaphotoredox methodology to achieve the catalytic intramolecular reductive cyclization of unactivated alkyl chlorides with tethered alkenes. The cleavage of strong C(sp3 )-Cl bonds is mediated by a highly nucleophilic low-valent cobalt or nickel intermediate generated by visible-light photoredox reduction employing a copper photosensitizer. The high basicity and multidentate nature of the ligands are key to obtaining efficient metal catalysts for the functionalization of unactivated alkyl chlorides.

5.
Angew Chem Int Ed Engl ; 56(34): 10108-10113, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28251752

RESUMO

The formation of the high-valent iron complex [Fe(cyclohexyl)4 ] from FeII under reducing conditions is best explained by disproportionation of a transient organoiron intermediate which is driven by dispersive forces between the cyclohexyl ligands and the formation of short and strong Fe-C bonds. The (meta)stability of this diamagnetic complex (S=0) is striking if one considers that it has empty d-orbitals at its disposal and contains, at the same time, no less than twenty H-atoms available for either α- or ß-hydride elimination.

6.
Chem Sci ; 8(7): 4739-4749, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155221

RESUMO

We present an efficient, general, fast, and robust light-driven methodology based on earth-abundant elements to reduce aryl ketones, and both aryl and aliphatic aldehydes (up to 1400 TON). The catalytic system consists of a robust and well-defined aminopyridyl cobalt complex active for photocatalytic water reduction and the [Cu(bathocuproine)(Xantphos)](PF6) photoredox catalyst. The dual cobalt-copper system uses visible light as the driving-force and H2O and an electron donor (Et3N or iPr2EtN) as the hydride source. The catalytic system operates in aqueous mixtures (80-60% water) with high selectivity towards the reduction of organic substrates (>2000) vs. water reduction, and tolerates O2. High selectivity towards the hydrogenation of aryl ketones is observed in the presence of terminal olefins, aliphatic ketones, and alkynes. Remarkably, the catalytic system also shows unique selectivity for the reduction of acetophenone in the presence of aliphatic aldehydes. The catalytic system provides a simple and convenient method to obtain α,ß-deuterated alcohols. Both the observed reactivity and the DFT modelling support a common cobalt hydride intermediate. The DFT modelled energy profile for the [Co-H] nucleophilic attack to acetophenone and water rationalises the competence of [CoII-H] to reduce acetophenone in the presence of water. Mechanistic studies suggest alternative mechanisms depending on the redox potential of the substrate. These results show the potential of the water reduction catalyst [Co(OTf)(Py2Tstacn)](OTf) (1), (Py2Tstacn = 1,4-di(picolyl)-7-(p-toluenesulfonyl)-1,4,7-triazacyclononane, OTf = trifluoromethanesulfonate anion) to develop light-driven selective organic transformations and fine solar chemicals.

7.
Angew Chem Int Ed Engl ; 54(5): 1521-6, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25504935

RESUMO

The alkylation of complexes 2 and 7 with Grignard reagents containing ß-hydrogen atoms is a process of considerable relevance for the understanding of C-H activation as well as C-C bond formation mediated by low-valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis-ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis-alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14-electron count, which has no less than four ß-H atoms but is nevertheless stable at low temperature against ß-hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C-H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution (15), whereas its structure in the solid state is more consistent with an η(3) -allyl iron hydride rendition featuring an additional agostic interaction (14). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron-mediated C-H activation cascade can be coaxed to induce a stereoselective CC bond formation. The structures of all relevant new iron complexes in the solid state are presented.

8.
J Am Chem Soc ; 136(25): 8851-4, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24905079

RESUMO

Copper-catalyzed cascade reactions between alkenes or alkynes and diaryliodonium salts form carbocyclic products in a single step. Arylation of the unsaturated functional group is proposed to form a carbocation intermediate that facilitates hydride shift pathways to translocate the positive charge to a remote position and enables ring formation via a Friedel-Crafts-type reaction.

9.
J Am Chem Soc ; 133(48): 19386-92, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22026511

RESUMO

Copper-catalyzed halide exchange reactions under very mild reaction conditions are described for the first time using a family of model aryl halide substrates. All combinations of halide exchange (I, Br, Cl, F) are observed using catalytic amounts of Cu(I). Strikingly, quantitative fluorination of aryl-X substrates is also achieved catalytically at room temperature, using common F(-) sources, via the intermediacy of aryl-Cu(III)-X species. Experimental and computational data support a redox Cu(I)/Cu(III) catalytic cycle involving aryl-X oxidative addition at the Cu(I) center, followed by halide exchange and reductive elimination steps. Additionally, defluorination of the aryl-F model system can be also achieved with Cu(I) at room temperature operating under a Cu(I)/Cu(III) redox pair.

10.
Chemistry ; 17(38): 10643-50, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22003511

RESUMO

A well-defined macrocyclic aryl­Cu(III) complex (2) reacts readily with a variety of oxygen nucleophiles, including carboxylic acids, phenols and alcohols, under mild conditions to form the corresponding aryl esters, biaryl ethers and alkyl aryl ethers. The relationship between these reactions and catalytic C-O coupling methods is demonstrated by the reaction of the macrocyclic aryl­Br species with acetic acid and p-fluorophenol in the presence of 10 mol% Cu(I). An aryl-Cu(III)-Br species 2(Br) was observed as an intermediate in the catalytic reaction. Investigation of the stoichiometric C-O bond-forming reactions revealed nucleophile-dependent changes in the mechanism. The reaction of 2 with carboxylic acids revealed a positive correlation between the log(k(obs)) and the pK(a) of the nucleophile (less-acidic nucleophiles react more rapidly), whereas a negative correlation was observed with most phenols (more-acidic phenols react more rapidly). The latter trend resembles previous observations with nitrogen nucleophiles. With carboxylic acids and acidic phenols, UV-visible spectroscopic data support the formation of a ground-state adduct between 2 and the oxygen nucleophile. Collectively, kinetic and spectroscopic data support a unified mechanism for aryl-O coupling from the Cu(III) complex, consisting of nucleophile coordination to the Cu(III) center, deprotonation of the coordinated nucleophile, and C-O (or C-N) reductive elimination from Cu(III).

11.
Dalton Trans ; 40(35): 8796-9, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21725566

RESUMO

Well-defined aryl-Cu(III) species undergo rapid reductive elimination upon reaction with phenolates (PhO(-)), to form aryl-OPh cross-coupling products. Kinetic studies show that the reaction follows a different mechanistic pathway compared to the reaction with phenols. The pH active cyclized pincer-like ligand undergoes an initial amine deprotonation that triggers a faster reactivity at room temperature. A mechanistic proposal for the enhanced reactivity and the role of EPR-detected Cu(II) species will be discussed in detail.

12.
Dalton Trans ; 39(43): 10458-63, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20886163

RESUMO

Well-defined aryl-Cu(III)-halide species undergo reductive elimination upon acid addition resulting in the formation of strong aryl-halide bonds. The computationally studied mechanism points towards ligand protonation as the rate-determining step, in agreement with previous experimental data.


Assuntos
Cobre/química , Halogênios/química , Hidrocarbonetos Aromáticos/química , Modelos Moleculares , Conformação Molecular , Oxirredução
13.
J Am Chem Soc ; 132(35): 12299-306, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20712320

RESUMO

The present study provides mechanistic details of a mild aromatic C-H activation effected by a copper(II) center ligated in a triazamacrocylic ligand, affording equimolar amounts of a Cu(III)-aryl species and Cu(I) species as reaction products. At low temperatures the Cu(II) complex 1 forms a three-center, three-electron C-H...Cu(II) interaction, identified by pulse electron paramagnetic resonance spectroscopy and supported by density functional theory calculations. C-H bond cleavage is coupled with copper oxidation, as a Cu(III)-aryl product 2 is formed. This reaction proceeds to completion at 273 K within minutes through either a copper disproportionation reaction or, alternatively, even faster with 1 equiv of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), quantitatively yielding 2. Kinetic studies of both reactions strongly implicate a rate-limiting proton-coupled electron transfer as the key C-H activation step, a mechanism that does not conform to the C-H activation mechanism in a Ni(II) analogue or to any previously proposed C-H activation mechanisms.


Assuntos
Cobre/química , Elétrons , Hidrocarbonetos Aromáticos/química , Compostos Organometálicos/química , Prótons , Cristalografia por Raios X , Ligantes , Compostos Macrocíclicos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Compostos Organometálicos/síntese química , Temperatura
14.
J Am Chem Soc ; 132(34): 12068-73, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20690595

RESUMO

Recent studies have highlighted the ability of Cu(II) to catalyze the aerobic oxidative functionalization of C-H bonds; however, very little is known about the mechanisms of these reactions. Here, we describe the Cu(II)-catalyzed C-H methoxylation and amidation of a macrocylic arene substrate with O(2) as the stoichiometric oxidant. Kinetic and in situ spectroscopic studies demonstrate the involvement of three different oxidation states of Cu in the catalytic mechanism, including an aryl-Cu(III) intermediate. These observations establish a novel mechanistic pathway that has implications for numerous other Cu-catalyzed aerobic oxidation reactions.


Assuntos
Derivados de Benzeno/síntese química , Cobre/química , Compostos Heterocíclicos/síntese química , Compostos Organometálicos/química , Derivados de Benzeno/química , Catálise , Compostos Heterocíclicos/química , Cinética , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Oxigênio/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA