Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Proc Natl Acad Sci U S A ; 119(37): e2208813119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067287

RESUMO

Increasing diversity on farms can enhance many key ecosystem services to and from agriculture, and natural control of arthropod pests is often presumed to be among them. The expectation that increasing the size of monocultural crop plantings exacerbates the impact of pests is common throughout the agroecological literature. However, the theoretical basis for this expectation is uncertain; mechanistic mathematical models suggest instead that increasing field size can have positive, negative, neutral, or even nonlinear effects on arthropod pest densities. Here, we report a broad survey of crop field-size effects: across 14 pest species, 5 crops, and 20,000 field years of observations, we quantify the impact of field size on pest densities, pesticide applications, and crop yield. We find no evidence that larger fields cause consistently worse pest impacts. The most common outcome (9 of 14 species) was for pest severity to be independent of field size; larger fields resulted in less severe pest problems for four species, and only one species exhibited the expected trend of larger fields worsening pest severity. Importantly, pest responses to field size strongly correlated with their responses to the fraction of the surrounding landscape planted to the focal crop, suggesting that shared ecological processes produce parallel responses to crop simplification across spatial scales. We conclude that the idea that larger field sizes consistently disrupt natural pest control services is without foundation in either the theoretical or empirical record.


Assuntos
Proteção de Cultivos , Produtos Agrícolas , Controle de Insetos , Insetos , Controle Biológico de Vetores , Animais , Produtos Agrícolas/parasitologia , Ecossistema
3.
J Econ Entomol ; 115(3): 852-862, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394543

RESUMO

Agricultural plant species differ in susceptibility to herbivores; therefore, identifying natural resistances or tolerances to pests can be leveraged to develop preventative, integrated pest management approaches. While many Citrus species are grown in California, most pest management guidelines are based upon research conducted on navel oranges [Citrus sinensis (L.) Osbeck; Sapindales: Rutaceae]. A recent study has established European earwigs (Forficula auricularia L.; Dermaptera: Forficulidae) as herbivores of young navel orange fruit, causing damage ranging from small bite marks to large chewed holes. It is unknown whether earwigs damage fruit of other citrus species. We conducted field experiments in which we caged earwigs to branch terminals bearing young fruit to explore potential differences in susceptibility of Citrus species to European earwigs. Specifically, we tested whether three species, navel oranges, clementines (C. clementina hort. ex Tanaka), and true mandarins (C. reticulata Blanco) exhibit differences in: 1) feeding deterrence to earwigs; 2) suitability as food for earwigs; 3) preferential abscission of damaged fruit; and 4) healing of damaged fruit. Earwigs caused heavy damage on navel orange and clementine fruit, whereas heavy damage was rare on true mandarin fruit. There was little evidence of preferential abscission of damaged fruit or healing of seriously damaged fruit. Consequently, several heavily damaged navel orange and one clementine fruit were retained to harvest and developed large scars. Overall, we found that Citrus fruit vary in their susceptibility to earwigs, and pest management strategies for earwigs should be refined to consider their varying effects on different Citrus species.


Assuntos
Citrus sinensis , Citrus , Animais , Auricularia , Frutas , Herbivoria
4.
J Econ Entomol ; 114(4): 1722-1732, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34185851

RESUMO

In establishing Integrated Pest Management (IPM) plans for understudied pests, it is crucial to understand the nature of their herbivory and resulting damage. European earwig (Forficula auricularia L.; Dermaptera: Forficulidae) densities are increasing in citrus orchards in Central California. Field observations suggest that earwigs feed on young, developing citrus fruit, but this hypothesis had not been examined with formal experimentation. Forktailed bush katydid nymphs (Scudderia furcata Brunner von Wattenwyl; Orthoptera: Tettigoniidae) are well-known citrus herbivores that feed on young citrus fruit, and it is possible that earwig damage may be misdiagnosed as katydid damage. Here we report findings from two field experiments in navel oranges (Citrus sinensis (L.) Osbeck; Sapindales: Rutaceae) that together tested: (1) whether earwigs damage young citrus fruit; (2) whether the amount of damage earwigs generate differs across developmental stage or sex of adult earwigs; (3) the window of time during which fruit are most sensitive to earwig damage; (4) whether damaged fruit are retained to harvest; and (5) the resulting damage morphology caused by earwigs relative to katydids. Earwigs, particularly nymphs, chewed deep holes in young citrus fruit from 0 to 3 wk after petal fall. Fruit damaged by earwigs were retained and exhibited scars at harvest. The morphology and distribution of scars on mature fruit only subtly differed between earwigs and katydids. This study establishes that earwigs can be direct pests in mature navel orange trees by generating scars on fruit and likely contribute to fruit quality downgrades.


Assuntos
Citrus sinensis , Citrus , Ortópteros , Animais , Frutas , Herbivoria
5.
J Econ Entomol ; 114(1): 215-224, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33210704

RESUMO

Sweet oranges (Citrus sinensis (L.) Osbeck Sapindales: Rutaceae) dominated commercial citrus production in California until recently when there has been a shift to mandarins, mostly Citrus reticulata (Blanco) mandarins and Citrus clementina (hort. ex Tanaka) clementines. Past analyses of commercial field scouting and harvest data indicated that fork-tailed bush katydids (Scudderia furcata Brunner von Wattenwyl), a major pest in oranges, are present in clementine groves, but that fruit scarring attributed to katydids is rare. Conversely, jagged or web-like scarring attributed to caterpillars was more prevalent than expected. We used two field experiments in four representative cultivars of clementines to test four explanatory hypotheses for this observation: 1) katydids do not feed on clementine fruit, 2) damaged clementine fruit recover, 3) damaged clementine fruit preferentially abscise, and 4) katydid scars on clementine fruit have a different, undocumented morphology, not recognized as katydid damage. We find support for the latter two hypotheses. Katydids fed readily on the clementine fruit of all cultivars tested, chewing irregular holes that developed into jagged or web-like scars of a range of shapes and often led to splitting and abscission of maturing fruit. The katydid scars often more closely resembled chewing caterpillar damage than the round katydid scars in oranges, suggesting that katydid damage is being misclassified in clementines. The resistance documented in some other mandarins was not observed. Katydids are clearly a frugivorous pest causing previously unrecognized scarring in clementines.


Assuntos
Citrus sinensis , Citrus , Ortópteros , Animais , Frutas
6.
J Econ Entomol ; 113(5): 2335-2342, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32651953

RESUMO

Integrated pest management (IPM) guidelines for horticulture are typically established from years of experimental research and experience for a crop species. Ecoinformatics methods can help to quickly adapt these guidelines following major changes in growing practices. Citrus production in California is facing several major challenges, one of which is a shift away from sweet oranges [Citrus sinensis (L.) Osbeck Sapindales: Rutaceae] toward mandarins (including mostly cultivars of C. reticulata Blanco and C. clementina hort. ex Tanaka). In the absence of IPM guidelines for mandarins, growers are relying on pest information developed from oranges. We mined a database of management records from commercial growers and consultants to determine densities for four arthropod pests: cottony cushion scale (Icerya purchasi Maskell Hemiptera: Monophlebidae), citricola scale (Coccus pseudomagnoliarum Kuwana Hemiptera: Coccidae), European earwig (Forficula auricularia Linnaeus Dermaptera: Forficulidae), citrus red mite (Panonychus citri McGregor Acari: Tetranychidae), and a natural enemy, predatory mites in the genus Euseius (Congdon Acarina: Phytoseiidae). Densities of cottony cushion scale were approximately 10-40 times higher in the two most commonly grown mandarin species than in sweet oranges, suggesting this pest is reaching outbreak levels more often on mandarins. Densities of the other pests and predatory mites did not differ significantly across citrus species. This is a first step toward establishing IPM guidelines for mandarins for these pests; more research is needed to determine how arthropod densities relate to crop performance in mandarins.


Assuntos
Artrópodes , Citrus sinensis , Citrus , Tetranychidae , Animais , California
7.
Sci Total Environ ; 733: 138683, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32422460

RESUMO

Pesticide use is a key component of efficient crop production, but is associated with a suite of costs. Understanding the main drivers of pesticide use will help us target research to develop effective alternatives. Although economic models predict, and empirical tests confirm, that the value of the crop being protected is an important determinant of between-crop variation in pesticide use, previous tests of this prediction have examined only modest numbers of crops and have not assessed the relative importance of crop value versus ecological determinants of pesticide use. Here we analyze variation in pesticide use across 93 crops grown in California, USA. We examine the joint roles of crop value and ecological determinants of pesticide use, including (i) the number of pest species associated with each crop; (ii) the distinction between annual vs. perennial crops; and (iii) the distinction between unprocessed vs. processed crops. As predicted, crop value was the dominant driver of the use of pesticides directed at arthropods and at plant pathogens, explaining 52.7% and 54.6% of total deviance, respectively. Ecological determinants of pesticide use were, however, also detected. Pesticide use was greater on crops that hosted a larger number of arthropod pest species (r = 0.32) or plant pathogen species (r = 0.29); for these pest groups, we saw no differences in pesticide use between annual vs. perennial crops, or processed vs. unprocessed crops. Perhaps surprisingly, crop value failed to explain the substantial between-crop variation in use of pesticides targeting weeds (1.7% of deviance explained, n.s.). Instead, an ecological factor, whether the crop was an annual versus a perennial plant, was the most important predictor of pesticide use against weeds, with more frequent applications on perennial crops. We conclude that both economic and ecological drivers influence the magnitude of potential crop losses, thereby shaping farmer pest control practices.

8.
J Econ Entomol ; 112(6): 2861-2871, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31587058

RESUMO

Plants use a variety of mechanisms to defend against herbivore damage, each with different consequences for agricultural production. Crops relying on tolerance strategies may need different pest management approaches versus those relying on resistance strategies. Previous work suggested that densities of fork-tailed bush katydids (Scudderia furcata Brunner von Wattenwyl [Orthoptera: Tettigoniidae]) that generated substantial scarring on cultivars of sweet oranges (Citrus sinensis, (L.) Osbeck [Sapindales: Rutaceae]) produced only low levels of scarring on cultivars of Citrus reticulata Blanco mandarins. We used field experiments in representative cultivars of these species to test non-mutually exclusive hypotheses regarding the mechanisms underlying this observation: 1) katydids are averse to feeding on mandarin fruits, 2) damaged mandarin fruits preferentially abscise, 3) damaged mandarin fruit tissue recovers during development, and 4) katydid scars on mandarins have a different morphology that may result in misclassification. We found strong support for the first hypothesis, demonstrating that katydids reject opportunities to feed on C. reticulata fruit. Instead of chewing deep holes in the fruit, as was commonly observed for C. sinensis, the katydids only scratched the surface of the C. reticulata fruits. The hypotheses of preferential abscission of damaged fruits and of recovery of damaged tissue were not supported. The low incidence of damage to the mandarins prevented a comprehensive assessment of the scar morphology; however, at harvest, the superficial cuts in C. reticulata were not easily distinguishable from background damage. This indicates that in contrast to C. sinensis, C. reticulata has substantial natural resistance to fork-tailed bush katydids making them a non-pest in this crop.


Assuntos
Citrus sinensis , Citrus , Animais , Produtos Agrícolas , Frutas , Herbivoria
9.
J Econ Entomol ; 112(6): 2767-2773, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260517

RESUMO

Several domesticated Citrus species are grown as major commercial crops in California. Despite this, farmers currently use a single set of management practices, originally created for sweet oranges (Citrus sinensis (L.) Osbeck [Sapindales: Rutaceae]), for both sweet oranges and all mandarin species. Mandarins, primarily Citrus reticulata Blanco, Citrus clementina hort. ex Tanaka, and Citrus unshiu Marcovitch, comprise almost 25% of California citrus acreage, and little work has been done to assess host-pest interactions for these species. Citrus thrips (Scirtothripscitri Moulton [Thysanoptera: Thripidae]) are one of the main pests in California citrus and are major targets for early spring, "petal fall" insecticide applications. We used mixed species citrus blocks to test the influence of Citrus species, including C. sinensis, C. reticulata, C. clementina, and C. unshiu, on 1) citrus thrips densities following petal fall; 2) citrus thrips-induced scarring on both the calyx and stylar ends of fruit; and 3) fruit deformation. Citrus sinensis and C. unshiu had relatively high citrus thrips densities and scarring levels, whereas C. reticulata had lower densities of citrus thrips and scarring levels. The age structure of citrus thrips populations also varied across Citrus species. Fruit deformity associated with citrus thrips scarring was found on all Citrus species examined. Scarring on the stylar-end of fruit, a previously largely ignored location of citrus thrips scarring, was found to be common in C. reticulata. It is clear from our work that species-specific management guidelines for citrus thrips are needed in sweet oranges and mandarins.


Assuntos
Citrus sinensis , Citrus , Tisanópteros , Animais , California , Frutas
10.
J Econ Entomol ; 112(5): 2268-2277, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31127848

RESUMO

One of the major challenges facing citrus integrated pest management (IPM) in California is the recent, sharp increase in the acreage of mandarins being planted. The current citrus IPM guidelines have been established from years of experiments and experience in oranges, with no specific guidelines for mandarins. In the absence of research into key arthropod pest effects in mandarins, the assumption that the pest management practices for oranges appropriately transfer for optimal production in mandarins has not been tested. We used a data mining or 'ecoinformatics' approach in which we compiled and analyzed production records collected by growers and pest control advisors to gain an overview of direct pest densities and their relationships with fruit damage for 202 commercial groves, each surveyed for 1-10 yr in the main production region of California. Pest densities were different among four commonly grown species of citrus marketed as mandarins (Citrus reticulata, C. clementina, C. unshiu, and C. tangelo) compared with the standard Citrus sinensis sweet oranges, for fork-tailed bush katydids (Scudderia furcata Brunner von Wattenwyl [Orthoptera: Tettigoniidae]), and citrus thrips (Scirtothrips citri Moulton [Thysanoptera: Thripidae]). Citrus reticulata had notably low levels of fruit damage, suggesting they have natural resistance to direct pests, especially fork-tailed bush katydids. These results suggest that mandarin-specific research and recommendations would improve citrus IPM. More broadly, this is an example of how an ecoinformatics approach can serve as a complement to traditional experimental methods to raise new and unexpected hypotheses that expand our understanding of agricultural systems.


Assuntos
Artrópodes , Citrus sinensis , Citrus , Tisanópteros , Animais , California , Frutas
11.
Math Biosci Eng ; 15(4): 993-1010, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380318

RESUMO

We apply SE-optimal design methodology to investigate optimal data collection procedures as a first step in investigating information content in ecoinformatics data sets. To illustrate ideas we use a simple phenomenological citrus red mite population model for pest dynamics. First the optimal sampling distributions for a varying number of data points are determined. We then analyze these optimal distributions by comparing the standard errors of parameter estimates corresponding to each distribution. This allows us to investigate how many data are required to have confidence in model parameter estimates in order to employ dynamical modeling to infer population dynamics. Our results suggest that a field researcher should collect at least 12 data points at the optimal times. Data collected according to this procedure along with dynamical modeling will allow us to estimate population dynamics from presence/absence-based data sets through the development of a scaling relationship. These Likert-type data sets are commonly collected by agricultural pest management consultants and are increasingly being used in ecoinformatics studies. By applying mathematical modeling with the relationship scale from the new data, we can then explore important integrated pest management questions using past and future presence/absence data sets.


Assuntos
Controle de Pragas/métodos , Animais , Citrus/parasitologia , Simulação por Computador , Conceitos Matemáticos , Ácaros/patogenicidade , Modelos Biológicos , Método de Monte Carlo , Controle de Pragas/estatística & dados numéricos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Dinâmica Populacional
12.
Oecologia ; 180(1): 169-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26376661

RESUMO

Inherited bacterial symbionts are common in arthropods and can have strong effects on the biology of their hosts. These effects are often mediated by host ecology. The Rickettsia symbiont can provide strong fitness benefits to its insect host, Bemisia tabaci, under laboratory and field conditions. However, the frequency of the symbiont is heterogeneous among field collection sites across the USA, suggesting that the benefits of the symbiont are contingent on additional factors. In two whitefly genetic lines collected from the same location, we tested the effect of Rickettsia on whitefly survival after heat shock, on whitefly competitiveness at different temperatures, and on whitefly competitiveness at different starting frequencies of Rickettsia. Rickettsia did not provide protection against heat shock nor affect the competitiveness of whiteflies at different temperatures or starting frequencies. However, there was a strong interaction between Rickettsia infection and whitefly genetic line. Performance measures indicated that Rickettsia was associated with significant female bias in both whitefly genetic lines, but in the second whitefly genetic line it conferred no significant fitness benefits nor conferred any competitive advantage to its host over uninfected whiteflies in population cages. These results help to explain other reports of variation in the phenotype of the symbiosis. Furthermore, they demonstrate the complex nature of these close symbiotic associations and the need to consider these interactions in the context of host population structure.


Assuntos
Aptidão Genética , Hemípteros/microbiologia , Fenótipo , Rickettsia/crescimento & desenvolvimento , Razão de Masculinidade , Simbiose , Animais , Feminino , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Temperatura Alta , Masculino , Estresse Fisiológico , Estados Unidos
13.
Microb Ecol ; 70(1): 287-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25626393

RESUMO

A new heritable bacterial association can bring a fresh set of molecular capabilities, providing an insect host with an almost instantaneous genome extension. Increasingly acknowledged as agents of rapid evolution, inherited microbes remain underappreciated players in pest management programs. A Rickettsia bacterium was tracked sweeping through populations of an invasive whitefly provisionally described as the "B" or "MEAM1" of the Bemisia tabaci species complex, in the southwestern USA. In this population, Rickettsia provides strong fitness benefits and distorts whitefly sex ratios under laboratory conditions. In contrast, whiteflies in Israel show few apparent fitness benefits from Rickettsia under laboratory conditions, only slightly decreasing development time. A survey of B. tabaci B samples revealed the distribution of Rickettsia across the cotton-growing regions of Israel and the USA. Thirteen sites from Israel and 22 sites from the USA were sampled. Across the USA, Rickettsia frequencies were heterogeneous among regions, but were generally very high, whereas in Israel, the infection rates were lower and declining. The distinct outcomes of Rickettsia infection in these two countries conform to previously reported phenotypic differences. Intermediate frequencies in some areas in both countries may indicate a cost to infection in certain environments or that the frequencies are in flux. This suggests underlying geographic differences in the interactions between bacterial symbionts and this serious agricultural pest.


Assuntos
Variação Genética , Hemípteros/microbiologia , Controle de Insetos/métodos , Espécies Introduzidas , Rickettsia/genética , Simbiose , Animais , Primers do DNA/genética , Aptidão Genética/genética , Geografia , Israel , Modelos Logísticos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Razão de Masculinidade , Sudoeste dos Estados Unidos , Fatores de Tempo
14.
Res Microbiol ; 165(2): 77-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24463012

RESUMO

Facultative bacterial endosymbionts are common, influential associates of arthropods, yet their movement among host species has not been well documented. Plant-mediated transmission of Rickettsia has been shown for the whitefly Bemisia tabaci. Bemisia tabaci in USA cotton fields harbors the secondary symbionts Rickettsia and Hamiltonella, and co-occurs with Trialeurodes sp. nr. abutiloneus whiteflies. To determine whether symbionts may be shared, the microbial diversity of these whiteflies on cotton across the USA was analyzed. Trialeurodes sp. nr. abutiloneus bore Portiera, Pseudomonas, Serratia, Arsenophonus and Wolbachia. No Rickettsia or Hamiltonella were detected. These results provide no evidence for horizontal transmission of symbionts between these whitefly genera.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Hemípteros/microbiologia , Simbiose , Animais , Gossypium/parasitologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados Unidos
15.
PLoS Genet ; 8(10): e1003012, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133394

RESUMO

Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI-inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI.


Assuntos
Bacteroidetes/genética , Genoma Bacteriano , Genômica , Animais , Artrópodes/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/metabolismo , Evolução Biológica , Vias Biossintéticas , Citoplasma/metabolismo , Ordem dos Genes , Interações Hospedeiro-Patógeno , Simbiose/genética
16.
Gene ; 502(1): 1-8, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22543020

RESUMO

What has driven the sweep of the Accord retrotransposon insertion allele of CYP6G1 in the natural populations of Drosophila melanogaster is unknown. Previous studies on the DDT selection hypothesis produced conflicting data. To reexamine the DDT selection hypothesis and search for alternative explanations, we conducted a series of correlation and genetic linkage experiments with eight D. melanogaster natural populations collected from California (CM1, CM2, CM3, and CM7) and Africa (AM2, AM3, AM4, AM7). Diagnostic PCR showed that CM1, CM2, CM7, and AM3 have the Accord insertion in the CYP6G1 locus, whereas the other four strains do not. RT-PCR analysis exhibits a 100% correlation between Accord insertion and CYP6G1 overexpression. However, among the four strains with Accord-mediated CYP6G1 overexpression only CM1 and CM7 are resistant to DDT, and the other two strains (CM2 and AM3), like the four Accord-free strains, are susceptible to DDT. By contrast, all the four strains with Accord-mediated CYP6G1 overexpression are resistant to nicotine, a plant allelochemical. Genetic crosses between DDT resistant and susceptible Accord-insertion strains, as well as crosses between Accord-insertion and Accord-free strains demonstrated that Accord insertion and CYP6G1 overexpression are genetically linked to nicotine resistance rather than DDT resistance. These results suggest that naturally-occurring allelochemicals such as nicotine are the initial driving force for the worldwide prevalence of the Accord insertion allele of CYP6G1 in D. melanogaster natural populations.


Assuntos
Região 5'-Flanqueadora , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Nicotina/farmacologia , Feromônios/farmacologia , Retroelementos , Animais , DDT/farmacologia , Análise Mutacional de DNA , Drosophila melanogaster/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Ligação Genética , Inseticidas/farmacologia , Masculino , Mutagênese Insercional , Transcrição Gênica
17.
Environ Microbiol ; 12(8): 2060-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966902

RESUMO

Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, 'Candidatus Regiella insecticola' and 'Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H. defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ∼55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids).


Assuntos
Afídeos/microbiologia , Enterobacteriaceae/genética , Evolução Molecular , Genoma Bacteriano , Simbiose , Animais , Hibridização Genômica Comparativa , DNA Bacteriano/genética , Enterobacteriaceae/fisiologia , Ilhas Genômicas , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
18.
PLoS Pathog ; 5(4): e1000368, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19343208

RESUMO

Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects.


Assuntos
Drosophila melanogaster/microbiologia , Ferro/metabolismo , Estresse Fisiológico , Simbiose , Wolbachia/fisiologia , Análise de Variância , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Feminino , Fertilidade , Masculino , Estatísticas não Paramétricas , Wolbachia/metabolismo
19.
Science ; 323(5910): 141-4, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19119237

RESUMO

Most pathogens require a relatively long period of development in their mosquito vector before they can be transmitted to a new human host; hence, only older insects are of epidemiological importance. The successful transfer of a life-shortening strain of the inherited bacterial symbiont, Wolbachia, into the major mosquito vector of dengue, Aedes aegypti, halved adult life span under laboratory conditions. The association is stable, and the Wolbachia strain is maternally inherited at high frequency. It is capable of inducing complete cytoplasmic incompatibility, which should facilitate its invasion into natural field populations and its persistence over time. Our data suggest that targeting mosquito age with inherited Wolbachia infections may be a viable strategy to reduce the transmission of pathogens such as dengue viruses.


Assuntos
Aedes/microbiologia , Insetos Vetores/microbiologia , Wolbachia/fisiologia , Aedes/genética , Aedes/fisiologia , Aedes/virologia , Animais , Sangue , Dengue/transmissão , Vírus da Dengue/crescimento & desenvolvimento , Feminino , Humanos , Insetos Vetores/genética , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Longevidade , Masculino , Reprodução , Simbiose , Temperatura , Wolbachia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA