Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(38): 6553-6563, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37604690

RESUMO

Large-scale brain networks undergo widespread changes with older age and in neurodegenerative diseases such as Alzheimer's disease (AD). Research in young adults (YA) suggest that the underlying functional architecture of brain networks remains relatively consistent between rest and task states. However, it remains unclear whether the same is true in aging and to what extent any changes may be related to accumulation of AD pathology such as ß-amyloid (Aß) and tau. Here, we examined age-related differences in functional connectivity (FC) between rest and an object-scene mnemonic discrimination task using fMRI in young and older adults (OA; both females and males). We used an a priori episodic memory network (EMN) parcellation scheme associated with object and scene processing, that included anterior-temporal regions and posterior-medial regions. We also used positron emission topography to measure Aß and tau in older adults. The correlation between rest and task FC (i.e., FC similarity) was reduced in older compared with younger adults. Older adults with lower FC similarity in EMN had higher levels of tau in the same EMN regions and performed worse during object, but not scene, trials during the fMRI task. These findings link AD pathology, particularly tau, to a less stable functional architecture in memory networks. They also suggest that smaller changes in FC organization between rest and task states may facilitate better performance in older age. Interpretations are limited by methodological factors related to different acquisition directions and durations between rest and task scans.SIGNIFICANCE STATEMENT The brain's large-scale network organization is relatively consistent between rest and task states in young adults (YA). We found that memory networks in older adults (OA) were less correlated between rest and (memory) task states compared with young adults. Older adults with less correlated brain networks also had higher levels of Alzheimer's disease (AD) pathology in the same regions, suggesting that a less stable network architecture may reflect the early evolution of AD. Older adults with less correlated brain networks also performed worse during the memory task suggesting that more similar network organization between rest and task states may facilitate better performance in older age.


Assuntos
Doença de Alzheimer , Memória Episódica , Feminino , Masculino , Adulto Jovem , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Envelhecimento , Peptídeos beta-Amiloides
2.
Neurobiol Aging ; 118: 44-54, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35868093

RESUMO

We investigated self-rating of cognitive task performance (self-appraisal) and the difference between self-rating and actual task performance (appraisal discrepancy) in cognitively healthy older adults and their relationship with cortical thickness and Alzheimer's disease (AD) biomarkers, amyloid and tau. All participants (N = 151) underwent neuropsychological testing and 1.5T structural magnetic resonance imaging. A subset (N = 66) received amyloid-PET with [11C] PiB and tau-PET with [18F] Flortaucipir. We found that worse performers had lower self-appraisal ratings, but still overestimated their performance, consistent with the Dunning-Kruger effect. Self-appraisal rating and appraisal discrepancy revealed distinct relationships with cortical thickness and AD pathology. Greater appraisal discrepancy, indicating overestimation, was related to thinning of inferior-lateral temporal, fusiform, and rostral anterior cingulate cortices. Lower self-appraisal was associated with higher entorhinal and inferior temporal tau. These results suggest that overestimation could implicate structural atrophy beyond AD pathology, while lower self-appraisal could indicate early behavioral alteration due to AD pathology, supporting the notion of subjective cognitive decline prior to objective deficits.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Metacognição , Tauopatias , Idoso , Envelhecimento/patologia , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides , Disfunção Cognitiva/psicologia , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/diagnóstico por imagem , Proteínas tau
3.
Cereb Cortex ; 31(10): 4781-4793, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037210

RESUMO

In presymptomatic Alzheimer's disease (AD), beta-amyloid plaques (Aß) and tau tangles accumulate in distinct spatiotemporal patterns within the brain, tracking closely with episodic memory decline. Here, we tested whether age-related changes in the segregation of the brain's intrinsic functional episodic memory networks-anterior-temporal (AT) and posterior-medial (PM) networks-are associated with the accumulation of Aß, tau, and memory decline using fMRI and PET. We found that AT and PM networks were less segregated in older than that in younger adults and this reduced specialization was associated with more tau and Aß in the same regions. The effect of network dedifferentiation on memory depended on the amount of Aß and tau, with low segregation and pathology associated with better performance at baseline and low segregation and high pathology related to worse performance over time. This pattern suggests a compensation phase followed by a degenerative phase in the early, preclinical phase of AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Memória/fisiologia , Rede Nervosa/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Adulto Jovem , Proteínas tau/metabolismo
4.
Neurobiol Aging ; 102: 170-177, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33770531

RESUMO

Age-related neural dedifferentiation-a decline in the distinctiveness of neural representations in the aging brain-has been associated with age-related declines in cognitive abilities. But why does neural distinctiveness decline with age? Based on prior work in nonhuman primates and more recent work in humans, we hypothesized that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) declines with age and is associated with neural dedifferentiation in older adults. To test this hypothesis, we used magnetic resonance spectroscopy (MRS) to measure GABA and functional MRI (fMRI) to measure neural distinctiveness in the ventral visual cortex in a set of older and younger participants. Relative to younger adults, older adults exhibited lower GABA levels and less distinct activation patterns for faces and houses in the ventral visual cortex. Furthermore, individual differences in GABA within older adults positively predicted individual differences in neural distinctiveness. These results provide novel support for the view that age-related reductions of GABA contribute to age-related reductions in neural distinctiveness (i.e., neural dedifferentiation) in the human ventral visual cortex.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Desdiferenciação Celular , Cognição , Células Receptoras Sensoriais/patologia , Córtex Visual/metabolismo , Córtex Visual/patologia , Ácido gama-Aminobutírico/metabolismo , Envelhecimento/patologia , Envelhecimento/psicologia , Animais , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagem
5.
J Neurosci ; 41(2): 366-375, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33219003

RESUMO

Studies suggest that tau deposition starts in the anterolateral entorhinal cortex (EC) with normal aging, and that the presence of ß-amyloid (Aß) facilitates its spread to neocortex, which may reflect the beginning of Alzheimer's disease (AD). Functional connectivity between the anterolateral EC and the anterior-temporal (AT) memory network appears to drive higher tau deposition in AT than in the posterior-medial (PM) memory network. Here, we investigated whether this differential vulnerability to tau deposition may predict different cognitive consequences of EC, AT, and PM tau. Using 18F-flortaucipir (FTP) and 11C-Pittsburgh compound-B (PiB) positron emission tomography (PET) imaging, we measured tau and Aß in 124 cognitively normal human older adults (74 females, 50 males) followed for an average of 2.8 years for prospective cognition. We found that higher FTP in all three regions was individually related to faster memory decline, and that the effects of AT and PM FTP, but not EC, were driven by Aß+ individuals. Moreover, when we included all three FTP measures competitively in the same model, only AT FTP significantly predicted memory decline. Our data support a model whereby tau, facilitated by Aß, transits from EC to cortical regions that are most closely associated with the anterolateral EC, which specifically affects memory in the initial stage of AD. Memory also appears to be affected by EC tau in the absence of Aß, which may be less clinically consequential. These findings may provide clarification of differences between normal aging and AD, and elucidate the transition between the two stages.SIGNIFICANCE STATEMENT Tau and ß-amyloid (Aß) are hallmarks of Alzheimer's disease (AD) but are also found in cognitively normal people. It is unclear whether, and how, this early deposition of tau and Aß may affect cognition in normal aging and the asymptomatic stage of AD. We show that tau deposition in the entorhinal cortex (EC), which is common in advanced age, predicts memory decline in older adults independent of Aß, likely reflecting normal, age-related memory loss. In contrast, tau in anterior-temporal (AT) regions is most predictive of memory decline in Aß+ individuals. These data support the idea that tau preferentially spreads to specific cortical regions, likely through functional connections, which plays a primary role in memory decline in the early stage of AD.


Assuntos
Envelhecimento/genética , Cognição , Disfunção Cognitiva/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/crescimento & desenvolvimento , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
6.
Front Aging Neurosci ; 11: 193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417396

RESUMO

Aging is associated with declines in motor and somatosensory function. Some of these motor declines have been linked to age-related reductions in inhibitory function. Here we examined whether tactile surround inhibition also changes with age and whether these changes are associated with those in the motor domain. We tested a group of 56 participants spanning a wide age range (18-76 years old), allowing us to examine when age differences emerge across the lifespan. Participants performed tactile and motor tasks that have previously been linked to inter- and intra-hemispheric inhibition in the somatosensory and motor systems. The results showed that aging is associated with reductions in inhibitory function in both the tactile and motor systems starting around 40 years of age; however, age effects in the two systems were not correlated. The independent effects of age on tactile and motor inhibitory function suggest that distinct mechanisms may underlie age-related reductions in inhibition in the somatosensory and motor systems.

8.
PLoS One ; 13(10): e0205515, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308004

RESUMO

PURPOSE: Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. METHODS: HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. RESULTS: Comparisons of exercisers to controls revealed that exercise led to smaller fitness deterioration with HDBR but did not affect brain volume or connectivity. Group comparisons showed that exercise modulated post-HDBR recovery of brain connectivity in somatosensory regions. Posthoc analysis showed that this was related to functional connectivity decrease with HDBR in non-exercisers but not in exercisers. Correlational analyses between fitness and brain changes showed that fitness decreases were associated with functional connectivity and volumetric increases (all r >.74), potentially reflecting compensation. Modest brain changes or even decreases in connectivity and volume were observed in subjects who maintained or showed small fitness gains. These results did not survive Bonferroni correction, but can be considered meaningful because of the large effect sizes. CONCLUSION: Exercise performed during HDBR mitigates declines in fitness and strength. Associations between fitness and brain connectivity and volume changes, although unadjusted for multiple comparisons in this small sample, suggest that supine exercise reduces compensatory HDBR-induced brain changes.


Assuntos
Repouso em Cama/efeitos adversos , Encéfalo/patologia , Encéfalo/fisiopatologia , Terapia por Exercício , Exercício Físico/fisiologia , Adulto , Composição Corporal , Encéfalo/diagnóstico por imagem , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Estudos Longitudinais , Masculino , Força Muscular , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Tamanho do Órgão , Aptidão Física , Simulação de Ausência de Peso
9.
Front Syst Neurosci ; 9: 121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388746

RESUMO

BACKGROUND: Spaceflight has been associated with changes in gait and balance; it is unclear whether it affects cognition. Head down tilt bed rest (HDBR) is a microgravity analog that mimics cephalad fluid shifts and body unloading. In consideration of astronaut's health and mission success, we investigated the effects of HDBR on cognition and sensorimotor function. Furthermore, we investigated if exercise mitigates any cognitive and sensorimotor sequelae of spaceflight. METHOD: We conducted a 70-day six-degree HDBR study in 10 male subjects who were randomly assigned to a HDBR supine exercise or a HDBR control group. Cognitive measures (i.e., processing speed, manual dexterity, psychomotor speed, visual dependency, and 2D and 3D mental rotation) and sensorimotor performance (functional mobility (FMT) and balance performance) were collected at 12 and 8 days pre-HDBR, at 7, 50, and 70 days in HDBR, and at 8 and 12 days post-HDBR. Exercise comprised resistance training, and continuous and high-intensity interval aerobic exercise. We also repeatedly assessed an outside-of-bed rest control group to examine metric stability. RESULTS: Small practice effects were observed in the control group for some tasks; these were taken into account when analyzing effects of HDBR. No significant effects of HDBR on cognition were observed, although visual dependency during HDBR remained stable in HDBR controls whereas it decreased in HDBR exercise subjects. Furthermore, HDBR was associated with loss of FMT and standing balance performance, which were almost fully recovered 12 days post-HDBR. Aerobic and resistance exercise partially mitigated the effects of HDBR on FMT and accelerated the recovery time course post-HDBR. DISCUSSION: HDBR did not significantly affect cognitive performance but did adversely affect FMT and standing balance performance. Exercise had some protective effects on the deterioration and recovery of FMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA