Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Mol Life Sci ; 80(9): 253, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589787

RESUMO

Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.


Assuntos
Temperatura Alta , Glândula Tireoide , Feminino , Masculino , Animais , Temperatura , Gônadas , Folhas de Planta
2.
Elife ; 102021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646121

RESUMO

The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of cystic proliferation of germ cells. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Germinativas/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oryzias/crescimento & desenvolvimento , Animais , Proteínas de Ciclo Celular/genética , Feminino , Células Germinativas/citologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Oryzias/genética , Oryzias/fisiologia , Comportamento Sexual Animal/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores
3.
Int J Dev Biol ; 65(4-5-6): 207-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930379

RESUMO

Fish present remarkable malleability regarding gonadal sex fate. This phenotypic plasticity enables an organism to adapt to changes in the environment by responding with different phenotypes. The gonad and the brain present this extraordinary plasticity. These organs are involved in the response to environmental stressors to direct gonadal fate, inducing sex change or sex reversal in hermaphroditic and gonochoristic fish, respectively. The presence of such molecular and endocrine plasticity gives this group a large repertoire of possibilities against a continuously changing environment, resulting in the highest radiation of reproduction strategies described in vertebrates. In this review, we provide a broad and comparative view of tremendous radiation of sex determination mechanisms to direct gonadal fate. New results have established that the driving mechanism involves early response to environmental stressors by the brain plus high plasticity of gonadal differentiation and androgens as by-products of stress inactivation. In addition to the stress axis, two other major axes - the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-thyroid axis, which are well known for their participation in the regulation of reproduction - have been proposed to reinforce brain-gonadal interrelationships in the fate of the gonad.


Assuntos
Encéfalo , Peixes , Gônadas , Diferenciação Sexual , Animais , Encéfalo/crescimento & desenvolvimento , Peixes/crescimento & desenvolvimento , Gônadas/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Reprodução
4.
Gen Comp Endocrinol ; 299: 113605, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866474

RESUMO

The understanding of the molecular and endocrine mechanisms behind environmentally-induced sex reversal in fish is of great importance in the context of predicting the potential effects of climate change, especially increasing temperature. Here, we demonstrate the global effects of high temperature on genome-wide transcription in medaka (Oryzias latipes) during early development. Interestingly, data analysis did not show sexual dimorphic changes, demonstrating that thermal stress is not dependent on genotypic sex. Additionally, our results revealed significant changes in several pathways under high temperature, such as stress response from brain, steroid biosynthesis, epigenetic mechanisms, and thyroid hormone biosynthesis, among others. These microarray data raised the question of what the exact molecular and hormonal mechanisms of action are for female-to-male sex reversal under high temperatures in fish. Complementary gene expression analysis revealed that androgen-related genes increase in females (XX) experiencing high water temperature. To test the involvement of androgens in thermal-induced sex reversal, an androgen antagonist was used to treat XX medaka under a high-temperature setup. Data clearly demonstrated failure of female-to-male sex reversal when androgen action is inhibited, corroborating the importance of androgens in environmentally-induced sex reversal.


Assuntos
Androgênios/farmacologia , Resposta ao Choque Térmico , Temperatura Alta , Oryzias/fisiologia , Caracteres Sexuais , Processos de Determinação Sexual , Diferenciação Sexual/efeitos dos fármacos , Animais , Feminino , Genoma , Masculino , Diferenciação Sexual/genética
5.
Development ; 146(8)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30936180

RESUMO

Exposure to environmental stressors, such as high temperature (HT), during early development of fish induces sex reversal of genotypic females. Nevertheless, the involvement of the brain in this process is not well clarified. In the present work, we investigated the mRNA levels of corticotropin-releasing hormone b (crhb) and its receptors (crhr1 and crhr2), and found that they were upregulated at HT during the crucial period of gonadal sex determination in medaka. In order to clarify their roles in sex reversal, biallelic mutants for crhr1 and crhr2 were produced by CRISPR/Cas9 technology. Remarkably, biallelic mutants of both loci (crhr1 and crhr2) did not undergo female-to-male sex reversal upon exposure to HT. Inhibition of this process in double corticotropin-releasing hormone receptor mutants could be successfully rescued through the administration of the downstream effector of the hypothalamic-pituitary-interrenal axis, cortisol. Taken together, these results reveal for the first time that the CNS acts as a transducer of masculinization induced by thermal stress.


Assuntos
Sistema Nervoso Central/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Feminino , Genótipo , Hidrocortisona/metabolismo , Masculino , Mutação/genética , Oryzias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-25221542

RESUMO

Besides the well-known function of thyroid hormones (THs) for regulating metabolism, it has recently been discovered that THs are also involved in testicular development in mammalian and non-mammalian species. THs, in combination with follicle stimulating hormone, lead to androgen synthesis in Danio rerio, which results in the onset of spermatogenesis in the testis, potentially relating the hypothalamic-pituitary-thyroid (HPT) gland to the hypothalamic-pituitary-gonadal (HPG) axes. Furthermore, studies in non-mammalian species have suggested that by stimulating the thyroid-stimulating hormone (TSH), THs can be induced by corticotropin-releasing hormone. This suggests that the hypothalamic-pituitary-adrenal/interrenal gland (HPA) axis might influence the HPT axis. Additionally, it was shown that hormones pertaining to both HPT and HPA could also influence the HPG endocrine axis. For example, high levels of androgens were observed in the testis in Odonthestes bonariensis during a period of stress-induced sex-determination, which suggests that stress hormones influence the gonadal fate toward masculinization. Thus, this review highlights the hormonal interactions observed between the HPT, HPA, and HPG axes using a comparative approach in order to better understand how these endocrine systems could interact with each other to influence the development of testes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA