RESUMO
Avocado virgin oil (AVO) was used during eggplant deep-frying, boil, and boil in a water-oil mixture (W/O). There were measured the contents of moisture, dry matter, fat, total (TPC) and ten individual phenols, antioxidant activity (ABTS and DPPH), and total sterols; as well as the profiles of eight fatty acids and fourteen sterols/stanols. The values of raw and processed foods were compared and studied with multivariate analysis. The antioxidant capacity of AVO lowered after deep frying but augmented in eggplant and water after all treatments. The TPC was steady in AVO and raised in fried eggplant. Thermal treatments added to the initial profiles of the AVO, eggplant and water, nine, eight, and four phenols, respectively. Percentages of the main fatty acids (oleic, palmitic and linoleic), and sterols (ß-sitosterol, campesterol, and Δ5-avenasterol), remained unchanged between the raw and treated AVO; and the lipidic fractions from processed eggplant. Cooking leads to the movement of hydrophilic and lipophilic functional compounds between AVO, eggplant and water. Migration of sterols and unsaturated fatty acids from AVO to eggplant during deep frying and W/O boiling improved the functional properties of eggplant by adding the high biological value lipophilic fraction to the naturally occurring polyphenols.
RESUMO
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.
RESUMO
Stevia is an important non-caloric sweetener that has health-beneficial properties. The objective is to evaluate growth, development, and rooting of stevia plants during different seasons of the year using growth hormones. Eight experiments were set up in Ciudad Guzman, Jalisco, Mexico, with three treatments (T): T1, indol-3 butyric acid (IBA) 7.4 mM; T2, alphanaphthylacetamide (ANA) 6.4 mM + IBA 0.3 mM; and T3, control. The variables evaluated were rooted plantlets, plant height, root length, number of leaves, stem diameter, leaf dry weight, stem dry weight, root dry weight, leaf area, shoot biomass, total biomass, as well as development and growth indexes. Four samplings were conducted in each experiment. The results show that the most appropriate months for propagating stevia cuttings are February, March, April, May, and July, when 96% to 99% of the cuttings rooted. The hormones had the best results related to production of root development. The control was outstanding only in variables related to production of shoot biomass and not to root development. It is concluded that stevia can be propagated vegetatively using cuttings treated with IBA 7.4 mM or ANA 6.4 mM + IBA 0.3 mM, preferable in the period from February to July, with the exception of June.
RESUMO
Extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O) were used for frying, boiling and sautéeing Mediterranean vegetables (potato, pumpkin, tomato and eggplant). Differences in antioxidant capacity (AC) (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric iron (FRAP), 2,2-azinobis-(3-ethylbensothiazoline)-6-sulphonic acid (ABTS)), total phenolic content (TPC) and individual phenols (high-performance liquid chromatography (HPLC)) in unused and used EVOO and water were determined. The water used to boil tomatoes showed the highest TPC value, whilst the lowest was found in the EVOO from the W/O used for boiling potatoes. After processing, the concentrations of phenols exclusive to EVOO diminished to different extents. There was a greater transfer of phenols from the vegetable to the oil when eggplant, tomato and pumpkin were cooked. W/O boiling enriched the water for most of the phenols analysed, such as chlorogenic acid and phenols exclusive to EVOO. The values of AC decreased or were maintained when fresh oil was used to cook the vegetables (raw > frying > sautéing > boiling). The water fraction was enriched in 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (Trolox) equivalents following boiling, though to a greater extent when EVOO was added. Phenolic content and AC of EVOO decreased after cooking Mediterranean diet vegetables. Further, water was enriched after the boiling processes, particularly when oil was included.
RESUMO
Diversos compuestos bioactivos de los alimentos se han empleado en el tratamiento alterativo de la diabetes mellitus. El jugo de granada posee un alto contenido en compuestos fenólicos a los cuales se les atribuyen propiedades biológicas como hipolipemiante, hipoglucemiante y protector del tejido pancreático. El objetivo de este estudio fue evaluar el efecto del libre acceso de jugo de granada sobre los niveles de glucosa, colesterol, triglicéridos e integridad del tejido pancreático in vivo. Se emplearon 18 ratas macho Wistar inducidas a hiperglucemia con 60 mg estreptozotocina/kg de peso corporal intraperitoneal (IP). Se formaron tres grupos experimentales. El grupo HS expuesto a solución de sacarosa, el grupo HJG expuesto a jugo de granada y el grupo HSI expuesto a solución de sacarosa y tratamiento con insulina. Los resultados mostraron que, las ratas del grupo HJG consumieron jugo de granada durante 21 días, lo que resultó en la reducción de los niveles de glucosa con respecto a su valor inicial de 417 a 356 mg/dL, no de manera significativa (p>0.05). Los niveles de lípidos mostraron una reducción no significativa al finalizar la intervención (p>0.05). El estudio histológico del páncreas en el grupo HJG mostró conservación de la arquitectura pancreática y presencia de islotes de Langerhans; mientras que el grupo HS mostró extensa necrosis pancreática y el grupo HSI mostró daño intermedio con escasos islotes de Langerhans. Se sugiere que el jugo de granada posee efectos hipoglucemiantes y protege el tejido pancreático en ratas hiperglucémicas inducidas(AU)
Diverse bioactive compounds of foods have been used in the alternative treatment of diabetes mellitus. Pomegranate juice has a high content of phenolic compounds to which biological properties are attributed as lipid-lowering, hypoglycemic and protective of pancreatic tissue. The objective of this study was to evaluate the effect of free access of pomegranate juice on the levels of glucose, cholesterol, triglycerides and the integrity of pancreatic tissue in vivo. Eighteen male Wistar rats were induced to hyperglycemia with 60 mg streptozotocin/kg of body weight intraperitoneal (IP). Three experimental groups were formed. The HS group exposed to sucrose solution, the HJG group exposed to pomegranate juice and the HSI group exposed to sucrose solution and insulin treatment. The results showed that the rats of the HJG group consumed pomegranate juice for 21 days, which resulted in the reduction of glucose levels from its initial value of 417 to 356 mg/dL, not significantly (p>0.05). Lipid levels showed a non-significant reduction at the end of the intervention (p>0.05). The histological study of the pancreas in the HJG group showed conservation of the pancreatic architecture and the presence of islets of Langerhans; while the HS group showed extensive pancreatic necrosis and the HSI group showed intermediate damage with few islets of Langerhans. It is suggested that pomegranate juice has hypoglycaemic effects and protects pancreatic tissue in induced hyperglycemic rats(AU)
Assuntos
Ratos , Estreptozocina/administração & dosagem , Índice Glicêmico , Metabolismo dos Lipídeos , Doenças Cardiovasculares/etiologia , Diabetes Mellitus , Alimentos, Dieta e NutriçãoRESUMO
Potato, tomato, eggplant and pumpkin were deep fried, sautéed and boiled in Mediterranean extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O). We determined the contents of fat, moisture, total phenols (TPC) and eighteen phenolic compounds, as well as antioxidant capacity in the raw vegetables and compared these with contents measured after cooking. Deep frying and sautéing led to increased fat contents and TPC, whereas both types of boiling (in water and W/O) reduced the same. The presence of EVOO in cooking increased the phenolics identified in the raw foods as oleuropein, pinoresinol, hydroxytyrosol and tyrosol, and the contents of vegetable phenolics such as chlorogenic acid and rutin. All the cooking methods conserved or increased the antioxidant capacity measured by DPPH, FRAP and ABTS. Multivariate analyses showed that each cooked vegetable developed specific phenolic and antioxidant activity profiles resulting from the characteristics of the raw vegetables and the cooking techniques.
Assuntos
Antioxidantes/análise , Culinária/métodos , Azeite de Oliva , Fenóis/análise , Verduras/química , Benzotiazóis/análise , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Cucurbita/química , Gorduras na Dieta/análise , Furanos/análise , Glucosídeos Iridoides , Iridoides/análise , Lignanas/análise , Solanum lycopersicum/química , Análise Multivariada , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Rutina/análise , Solanum melongena/química , Solanum tuberosum/química , Ácidos Sulfônicos/análiseRESUMO
Freeze-drying technology is the best dehydration process to preserve shelf-life and allowing avocado to maintain its sensorial and nutritional characteristics. The aim of this work was to determine if the freeze-drying and production condition have an effect on the nutritional quality of the avocado pulp grown in rain-fed and irrigation orchards. Four treatments were applied: non-freeze-dried rain-fed fruits, non-freeze-dried irrigation fruits, freeze-dried rain-fed fruits and freeze-dried irrigation fruits. Results showed that the fruit is made up of 71.4%, 16%, and 12.6% pulp, seed and skin, respectively. The pulp is made up of 71.51%, 19.96%, 2.81%, 0.51% and 1.51% water, lipids, ashes, crude fiber and protein, respectively. Avocado oil is composed by 61%, 18.8%, 11.6% and 7% oleic, palmitic, linoleic, and palmitoleic fatty acids, respectively. The freeze-drying decreased the linoleic acid by 1.43 g/100g. Under rain-fed conditions 4% and 13% less total fat and oleic fatty acid are produced than in irrigation conditions. We conclude that freeze-dried avocado pulp shows slight changes in their nutritional quality.
La tecnología de liofilización es el mejor proceso de deshidratación para mantener mayor vida de anaquel y conservar las propiedades nutricionales y sensoriales de la pulpa del aguacate. El objetivo de este estudio fue determinar si el liofilizado y condición de producción tienen un efecto sobre la calidad nutrimental de la pulpa de aguacate cultivado en huertas de riego y temporal. Se aplicaron 4 tratamientos: frutos de temporal no liofilizado, frutos de riego no liofilizado, frutos liofilizados de temporal y frutos liofilizados de riego. Los resultados muestran que el fruto está compuesto por 71.39, 16 y 12.6% de pulpa, hueso y cascara respectivamente. La pulpa está compuesta por 71.51, 19.96, 2.81, 0.51 y 1.5 % de humedad, lípidos, cenizas, fibra cruda y proteína, respectivamente. El aceite del aguacate está constituido de 61. 18.8, 11.6 y 7% de ácidos grasos oleico, palmítico, linoléico y palmitoleico, respectivamente. El liofilizado disminuyó 1.43 g/100 g de ácido linoléico. Bajo condiciones de temporal se produce 4 y 13% menos grasa total y ácido graso oleico que en condiciones de riego. Se concluye que la pulpa del aguacate liofilizada presenta ligeros cambios en su calidad nutrimental.