Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiol Phys Technol ; 17(1): 153-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37991701

RESUMO

The utilization of contrast agents in magnetic resonance imaging (MRI) has become increasingly important in clinical diagnosis. However, the low diagnostic specificity of this technique is a limiting factor for the early detection of tumors. To develop a new contrast agent with a specific target for early stage tumors, we present the synthesis and characterization of a nanocontrast composed of gold nanoparticles (AuNPs), gadopentetic acid (Gd-DTPA), and epidermal growth factor (EGF). Carbodiimide-based chemistry was utilized to modify Gd-DTPA for functionalization with AuNPs. This resulted in the formation of the Au@Gd-EGF nanocontrast. The relaxation rate (1/T1) of the nanocontrast was analyzed using MRI, and cytotoxicity was determined based on cell viability and mitochondrial activity in a human breast adenocarcinoma cell line. Fourier-transform infrared spectroscopy analysis confirmed the effectiveness of carbodiimide in the formation of the Gd-DTPA-cysteamine complex in the presence of bands at 930, 1042, 1232, 1588, and 1716 cm-1. The complexes exhibited good interactions with the AuNPs. However, the signal intensity of the Au@Gd-EGF nanocontrast was lower than that of the commercial contrast agent because the r1/r2 relaxivities of the Gd-DTPA-based contrast agents were lower than those of the gadoversetamide-based molecules. The Au@Gd-EGF nanocontrast agent exhibited good biocompatibility, low cytotoxicity, and high signal intensity in MRI with active targeted delivery, suggesting significant potential for future applications in the early diagnosis of tumors.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Meios de Contraste , Gadolínio DTPA/química , Ouro/química , Fator de Crescimento Epidérmico , Gadolínio/química , Nanopartículas Metálicas/química , Imageamento por Ressonância Magnética/métodos , Carbodi-Imidas
2.
Pharmacol Rep ; 75(4): 951-961, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37171518

RESUMO

BACKGROUND: Bacterial resistance is defined as a microorganism's capacity to develop mechanisms for resisting a determined antimicrobial. Gram-positive bacteria, such as Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis), are internationally recognized among the isolates with this resistance profile. In this context, the demand for new medicines has risen, and silver nanoparticles (AgNPs) have been highlighted, especially for their anti-bacterial effects. To develop a nano-antibiotic for treating these Gram-positive strains, we herein report synthesizing and characterizing a nano-antibiotic based on AgNPs functionalized with the complex vancomycin-cysteamine. METHODS: AgNPs were produced using the bottom-up methodology and functionalized with vancomycin modified by the carbodiimide chemistry, forming Ag@vancomycin. Susceptibility tests were performed using S. aureus and E. faecalis strains to assess the bacteriostatic and bactericidal potential of the developed nano-antibiotic. RESULTS: Fourier transform infrared spectroscopy measurements showed the efficacy of vancomycin chemical modification, and the characteristic bands of AgNPs functionalization with the antibiotic. The increase in the nano-antibiotic average hydrodynamic diameter observed by dynamic light scattering proved the presence of vancomycin at the surface of AgNPs. The data from the minimum inhibitory concentration and minimal bactericidal concentration assays tested on standard and clinical planktonic strains of S. aureus and E. faecalis presented excellent performance. CONCLUSION: The results indicate the promising development of a new nano-antibiotic in which the functionalization potentiates the bacteriostatic action of AgNPs and vancomycin with greater efficacy against Gram-positive strains.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Vancomicina/farmacologia , Vancomicina/química , Staphylococcus aureus , Enterococcus faecalis , Prata/farmacologia , Cisteamina/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
3.
Antibiotics (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978403

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic bacterium that has drawn attention due to its resistance to carbapenem antibiotics. The treatment of patients with severe infections has been challenging. Thus, silver nanoparticles (AgNPs) have been applied for their antimicrobial effects. This work aims to analyze the synergistic effect of the carbapenem antibiotic Imipenem with AgNPs against different susceptibility clinical profiles of K. pneumoniae. The silver nanoparticles were synthesized by bottom-up methodology and capped with alpha-lipoic acid. Susceptibility tests were performed using four K. pneumoniae strains with different susceptibility profiles to Imipenem. The strains were induced to form a biofilm for 48 h. Crystal violet and Resazurin assays were performed to determine biofilm formation and minimal inhibitory concentration, respectively. The reduction in Imipenem concentration with the association of nanoparticles was found in all strains studied in planktonic form, and the synergism between silver nanoparticles and Imipenem was demonstrated through the analysis of the fractional inhibitory concentration index. The viability percentage was reduced at rates ≥80% in the biofilm analysis, characterized by the minimal biofilm inhibitory concentration. The study's proposed association resulted in inhibitory effects on different K. pneumoniae profiles, both in planktonic forms and biofilm, with peculiar behavior in the Imipenem-resistant profile.

4.
Am J Infect Control ; 51(8): 871-878, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36581226

RESUMO

BACKGROUND: Multidrug-resistant bacteria are one of the world's biggest health problems; therefore, improving the spectrum of action of antibiotics could be necessary to reverse this situation. Amikacin and silver salts have well-known antimicrobial properties. However, both drugs lost their effectiveness against some bacteria, such as Acinetobacter baumannii. This work aims to develop a nanodrug from silver nanoparticles (AgNPs) functionalized with Amikacin against multidrug-resistant Acinetobacter baumannii. METHODS: AgNPs were produced using the bottom-up methodology and functionalized with Amikacin modified by the carbodiimide-based chemistry, forming AgNPs@Amikacin. Susceptibility tests were performed using Amikacin-resistant Acinetobacter baumannii strains to assess the bacteriostatic and bactericidal potential of the developed nanodrug. The clinical strains were induced to form a biofilm, and biomass quantification and the metabolic activity were determined. RESULTS: The AgNPs have a hydrodynamic diameter of the particles with a bimodal distribution, with a size of 37.84 nm. The FT-IR spectrum of AgNPs@Amikacin exhibits vibrational modes corresponding to Amikacin, confirming the conjugation to AgNPs. Susceptibility testing demonstrated a minimal inhibitory and bactericidal concentration of < 0.5 µg/mL. The AgNPs@Amikacin reduced the biofilm metabolic activity of Acinetobacter baumannii at rates ≥ 50%, characterized by the minimal biofilm inhibition concentrations. CONCLUSIONS: Results demonstrate a promising development of a new nanodrug with lower concentrations, less toxicity, and greater efficacy against multidrug-resistant Acinetobacter baumannii.


Assuntos
Acinetobacter baumannii , Nanopartículas Metálicas , Humanos , Amicacina/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
5.
Photodiagnosis Photodyn Ther ; 33: 102186, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33497816

RESUMO

To develop a treatment modality for triple-negative breast cancer, we investigated the efficacy of a bifunctional theranostic nanoprobes (BN) during Photodynamic Therapy (PDT) on human breast carcinoma and normal human cells. The BN is a 21 nm gold nanoparticles functionalized with Chlorin e6 (Ce6) and Epidermal Growth Factor (EGF). Attachment to gold nanoparticle stabilizes Ce6 while EGF acts as a cancer cell targeting agent. Fluorescence Spectroscopy and Confocal Fluorescence Microscopy revealed a gradual uptake of nanoprobes into cancer cells at an average rate of 63 BN/min. Cell viability assays showed that 0.2 µg/mL BN concentration was highly cytotoxic to cancer cells (86 %), but not normal cells. At this concentration, 58 % cancer cells were necrotic and 38 % apoptotic, while the reactive oxygen species (ROS) was 9-fold higher in cancer cells compared to normal. Overall, results suggest that BN mediated PDT can achieve targeted cancer cell death with high efficiency.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Clorofilídeos , Fator de Crescimento Epidérmico , Ouro , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
J Pharm Sci ; 105(1): 25-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26852838

RESUMO

Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found that nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response, we created 43 nm and 44 nm of gold and silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the epidermal growth factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 h after tail vein injection. Relative to controls, mouse EGF (mEGF)-coated silver and gold nanoprobes are found at background levels in all organs including the liver and spleen. The lack of sequestration of mEGF-coated nanoprobes in the liver and spleen and the corresponding uptake of control nanoprobes at elevated levels in these organs suggest that the former are not recognized by the immune system. Further studies of cytokine and interleukin levels in the blood are required to confirm avoidance of an immune response.


Assuntos
Receptores ErbB/metabolismo , Ouro/farmacocinética , Nanopartículas Metálicas/química , Sondas Moleculares/farmacocinética , Nanomedicina/métodos , Animais , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/farmacocinética , Receptores ErbB/genética , Ouro/química , Injeções Intravenosas , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Sondas Moleculares/química , Prata/química , Prata/farmacocinética , Propriedades de Superfície , Ácido Tióctico/química , Ácido Tióctico/farmacocinética , Distribuição Tecidual
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 152: 397-403, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26241825

RESUMO

Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25°C in vitro) and as yeast cells in the human host (or at 37°C in vitro). Because mycological examination of lesions in patients frequently is unable to show the presence of the fungus and serological tests can misdiagnose the disease with other mycosis, the development of new approach's for molecular identification of P. brasiliensis spurges is needed. This study describes the use of a gold nanoprobe of a known gene sequence of P. brasiliensis as a molecular tool to identify P. brasiliensis by regular polymerase chain reaction (PCR) associated with a colorimetric methods. This approach is suitable for testing in remote areas because it does not require any further step than gene amplification, being safer and cheaper than electrophoresis methods. The proposed test showed a color change of the PCR reaction mixture from red to blue in negative samples, whereas the solution remains red in positive samples. We also performed a Fourier Transform Infrared (FT-IR) Spectroscopy analysis to characterize and compare the chemical composition between yeast and mycelia forms, which revealed biochemical differences between these two forms. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates. The most prominent difference between both forms was vibration modes related to 1,3-ß-glucan usually found in mycelia and 1,3-α-glucan found in yeasts and also chitin forms. In this work, we introduce FT-IR as a new method suitable to reveal overall differences that biochemically distinguish each form of P. brasiliensis that could be additionally used to discriminate biochemical differences among a single form under distinct environmental conditions.


Assuntos
Ouro/química , Nanopartículas/química , Sondas de Oligonucleotídeos/química , Paracoccidioides/química , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , DNA Fúngico/análise , DNA Fúngico/genética , Humanos , Micélio/química , Micélio/genética , Micélio/isolamento & purificação , Nanotecnologia/métodos , Sondas de Oligonucleotídeos/genética , Paracoccidioides/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Artigo em Inglês | MEDLINE | ID: mdl-24036304

RESUMO

Paracoccidioides brasiliensis (P. brasiliensis) is a thermo-dimorphic fungus that causes paracoccidioidomycosis. Brazil epidemiological data shows that endemic areas are the subtropical regions, especially where agricultural activities predominate such as the Southeast, South, and Midwest. There are several tests to diagnose paracoccidioidomycosis, but they have many limitations such as low sensitivity, high cost, and a cross-reacting problem. In this work, gold nanoprobes were used to identify P. brasiliensis as an alternative diagnostic technique, which is easier to apply, costs less, and has great potential for application. The specific Ribosomal sequence of P. brasiliensis DNA was amplified and used to design the nanoprobes using a thiol-modified oligonucleotide. The results of positive and negative tests were done by UV-visible and Fourier Transform Infrared (FT-IR) measurements. The deconvolution of FT-IR sample spectra showed differences in the vibrational modes from the hydrogen bridge NHN and NHO bands that form the double helix DNA for samples matching the DNA sequence of nanoprobes that could be used to classify the samples.


Assuntos
DNA Fúngico/análise , DNA Ribossômico/análise , Sondas Moleculares/química , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , DNA Fúngico/química , DNA Ribossômico/química , Espectrofotometria Ultravioleta , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA