RESUMO
New, critically important data have been recently generated about the response to hypoxia. This response can be schematized in three main systems or functions, ie, detectional or oxygen sensing, regulatory, which controls gene expression and effector. The principal organizer of the regulatory branch is a specific transcription factor, the hypoxia-inducible factor 1 (HIF-1). In the presence of oxygen, the alpha subunit of HIF-1 (HIF-1alpha) is modified by hydroxylases, that represent the central point of the oxygen sensing mechanism. This type of hydroxylation induces HIF-1alpha catabolism by the proteosome. On the contrary, in hypoxia, or in the presence of certain growth factors that increase HIF-1alpha synthesis, HIF-1alpha translocates to the nucleus, where it binds HIF-1beta, and thence acts on transcription of genes carrying hypoxia responsive elements (HRE) on their promoters. These genes regulate the synthesis of an ample series of proteins, which span from respiratory enzymes and transporters to hormones regulating circulation and erythropoiesis. The role of HIF-1alpha is not restricted to the mere induction of adaptation to decreased oxygen: instead, it significantly participates in cell repairing mechanisms. A simple list of some of the stimulatory or inhibitory alterations of pathophysiological importance involving the HIF-1 system, would include: chronic lung disease, smoking adaptation, anemia/hemorrhage, ischemia/reperfusion, growth, vascularization and cell resistance of tumors, preeclampsia and intrauterine growth retardation, retinal hyper o hypovascularization, drug intoxications, bowel inflammatory disease and wound repair. This list illustrates by itself the importance of the mechanism herein reviewed.
Assuntos
Regulação da Expressão Gênica/fisiologia , Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/genética , Cardiopatias/genética , Cardiopatias/fisiopatologia , Humanos , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologiaRESUMO
La respuesta hipóxica, sobre la que se dispone de nuevos datos críticamente importantes, puede esquematizarse en tres sistemas, vg. de detección o sensor de oxígeno, de regulación, que controla la expresión génica y efector. El elemento principal de organización del sistema regulador es un factor de transcripción específico, el factor inducible por hipoxia 1 (HIF-1). En presencia de oxígeno, la subunidad α del HIF-1 (HIF-1α) se modifica por las hidroxilasas, que constituyen el punto central del mecanismo sensor, induciendo su catabolismo por el proteosoma. Por el contrario, en hipoxia, o en presencia de algunos factores de crecimiento que incrementan su síntesis, el HIF-1α se transloca al núcleo, donde, unido al HIF-1β, actúa como factor transcripcional de genes con elementos de respuesta hipóxica (HRE) en su promotor. Estos regulan lasíntesis de una amplia serie de proteínas, que abarcan desde enzimas respiratorias y transportadores hasta hormonas involucradas en la regulación a escala del organismo de la circulación y la eritropoyesis. El papel del HIF-1 no se restringe a la mera inducción de una respuesta adaptativa a la falta de oxígeno, sino que participa significativamente en los mecanismos de reparación celular. Una simple lista de algunas alteraciones de importância fisiopatológica, tanto estimulatorias como inhibitorias, que involucran al sistema de HIF-1, incluiría: enfermedad pulmonar crónica, adaptación al tabaco/humo, anemia/hemorragia, isquemia/reperfusión, crecimiento, vascularización y resistencia celular de los tumores, preeclampsia y crecimiento intrauterino retardado, hiper o hipovascularización retiniana, sobredosis de fármacos, enfermedad inflamatoria intestinal y curación de heridas. Esta sola enumeración ilustra la importancia de este mecanismo. .
New, critically important data have been recently generated about the response to hypoxia. This response can be schematized in three main systems or functions, ie, detectional or oxygen sensing, regulatory, which controls gene expression and effector. The principal organizer of the regulatory branch is a specific transcription factor, the hypoxia-inducible factor 1 (HIF-1). In the presence of oxygen, the α subunit of HIF-1 (HIF-1α) is modified by hydroxylases, that represent the central point of the oxygen sensing mechanism. This type of hydroxylation induces HIF-1α catabolism by the proteosome. On the contrary, in hypoxia, or in the presence of certain growth factors that increase HIF-1α synthesis, HIF-1α translocates to the nucleus, where it binds HIF-1β, and thence acts on transcription of genes carrying hypoxia responsive elements (HRE) on their promoters. These genes regulate the synthesis of an ample series of proteins, which span from respiratory enzymes and transporters to hormones regulating circulation and erythropoiesis. The role of HIF-1α is not restricted to the mere induction of adaptation to decreased oxygen: instead, it significantly participates in cell repairing mechanisms. A simple list of some of the stimulatory or inhibitory alterations of pathophysiological importance involving the HIF-1 system, would include: chronic lung disease, smoking adaptation, anemia/hemorrhage, ischemia/reperfusion, growth, vascularization and cell resistance of tumors, preeclampsia and intrauterine growth retardation, retinal hyper ohypovascularization, drug intoxications, bowel inflammatory disease and wound repair. This list illustrates by itself the importance of the mechanism herein reviewed.
Assuntos
Humanos , Hipóxia/genética , Regulação da Expressão Gênica/fisiologia , Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Cardiopatias/genética , Cardiopatias/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologiaRESUMO
BACKGROUND: In spite of intensive research, the actual role of heparin in endothelial cell (EC) biology remains incompletely understood. In particular, further insight is needed into the interaction of heparin with the potent heparin-binding angiogenic factor, vascular endothelial growth factor (VEGF). This study aimed to examine the effect of heparin on VEGF-mediated EC responses. METHODS: Confluent bovine aorta EC were treated with high (HMWH) and low molecular weight heparin (LMWH). 3H-Thymidine (3H-Thy) uptake, flow cytometry, 51Cr-release, nitrites accumulation, and cytosolic free Ca2+ ([Ca2+]i), endothelial nitric oxide synthase (eNOS) mRNA expression and tissue factor (TF) concentration were measured. RESULTS: HMWH and LMWH blocked VEGF proliferative actions and blunted VEGF-induced [Ca2+]i transients. However, the heparins did not block the VEGF protective effects on EC. These changes occurred in parallel with a potentiation of the VEGF-related NO production by both heparins. The Akt/PI3K inhibitor, LY 294002, blocked this potentiation, related to increased eNOS activity rather than eNOS expression. Connecting both effects, the NO antagonist, L-NAME, shifted the protective effects of VEGF to a cytotoxic mode. CONCLUSION: HMWH and LMWH block the proliferative and [Ca2+]i-mobilizing effects of VEGF on EC, by a NO-dependent mechanism. On the contrary, VEGF-induced NO production is stimulated. The Akt/PI3K pathway at least in part mediates this effect. By changing the way the VEGF intracellular signaling is driven, heparin could act as a stabilizing factor for the endothelium, without stimulating vessel proliferation.