Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470178

RESUMO

For many years, research in the field of steroid synthesis has aimed to understand the regulation of the rate-limiting step of steroid synthesis, i.e. the transport of cholesterol from the outer to the inner mitochondrial membrane, and identify the protein involved in the conversion of cholesterol into pregnenolone. The extraordinary work by B Clark, J Wells, S R King, and D M Stocco eventually identified this protein and named it steroidogenic acute regulatory protein (StAR). The group's finding was also one of the milestones in understanding the mechanism of nonvesicular lipid transport between organelles. A notable feature of StAR is its high degree of phosphorylation. In fact, StAR phosphorylation in the acute phase is required for full steroid biosynthesis. As a contribution to this subject, our work has led to the characterization of StAR as a substrate of kinases and phosphatases and as an integral part of a mitochondrion-associated multiprotein complex, essential for StAR function and cholesterol binding and mitochondrial transport to yield maximum steroid production. Results allow us to postulate the existence of a specific cellular microenvironment where StAR protein synthesis and activation, along with steroid synthesis and secretion, are performed in a compartmentalized manner, at the site of hormone receptor stimulation, and involving the compartmentalized formation of the steroid molecule-synthesizing complex.


Assuntos
Fosfoproteínas , Esteroides , Fosfoproteínas/metabolismo , Colesterol/metabolismo , Microambiente Celular
2.
Front Endocrinol (Lausanne) ; 14: 1175677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223023

RESUMO

Hormone-receptor signal transduction has been extensively studied in adrenal gland. Zona glomerulosa and fasciculata cells are responsible for glucocorticoid and mineralocorticoid synthesis by adrenocorticotropin (ACTH) and angiotensin II (Ang II) stimulation, respectively. Since the rate-limiting step in steroidogenesis occurs in the mitochondria, these organelles are key players in the process. The maintenance of functional mitochondria depends on mitochondrial dynamics, which involves at least two opposite events, i.e., mitochondrial fusion and fission. This review presents state-of-the-art data on the role of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1), in Ang II-stimulated steroidogenesis in adrenocortical cells. Both proteins are upregulated by Ang II, and Mfn2 is strictly necessary for adrenal steroid synthesis. The signaling cascades of steroidogenic hormones involve an increase in several lipidic metabolites such as arachidonic acid (AA). In turn, AA metabolization renders several eicosanoids released to the extracellular medium able to bind membrane receptors. This report discusses OXER1, an oxoeicosanoid receptor which has recently arisen as a novel participant in adrenocortical hormone-stimulated steroidogenesis through its activation by AA-derived 5-oxo-ETE. This work also intends to broaden knowledge of phospho/dephosphorylation relevance in adrenocortical cells, particularly MAP kinase phosphatases (MKPs) role in steroidogenesis. At least three MKPs participate in steroid production and processes such as the cellular cycle, either directly or by means of MAP kinase regulation. To sum up, this review discusses the emerging role of mitochondrial fusion proteins, OXER1 and MKPs in the regulation of steroid synthesis in adrenal cortex cells.


Assuntos
Dinâmica Mitocondrial , Hormônios Peptídicos , Humanos , Transdução de Sinais , Eicosanoides , Ácido Araquidônico , Hormônio Adrenocorticotrópico , Angiotensina II
3.
Biochem Pharmacol ; 159: 52-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414939

RESUMO

Acyl-CoA synthetase-4 (ACSL4) is an enzyme implicated in estrogen receptor α (ERα) negative regulation and hormone therapy resistance in breast cancer. In addition, ACSL4 has been associated to certain types of hormone resistance in prostate cancer. Chemotherapeutic treatment of disseminated breast cancer is usually faced with therapy resistance associated to ATP-binding cassette (ABC) transporter expression, which detect and eject anti-cancer drugs from cells. In this context, the aim of the present work was to study the role of ACSL4 in anti-cancer drug resistance and the involvement of ABC transporters in the underlying mechanisms. To this end, we used MCF-7 Tet-Off/ACSL4 and MDA-MB-231 mock cells, which overexpress ACSL4, and control line MCF-7 Tet-Off empty vector, MDA-MB-231 shRNA ACSL4 and MDA-MB-231 wild type cells. Assays were conducted on cell viability (MTT), cell proliferation (BrdU), drug efflux (flow cytometry), ACSL4-responsive drug resistance ABC transporter genes (RNA-Seq), transporter mRNA expression, protein levels and signaling pathway participation (real-time PCR and Western blot). Higher survival rates upon chemotherapeutic treatment were obtained in MCF-7 Tet-Off/ACSL4 and MDA-MB-231 mock cells, an effect counteracted by doxycycline- or shRNA-induced ACSL4 inhibition, respectively. A synergic effect of ACSL4 inhibitor triacsin C and chemotherapeutic drugs was observed on the inhibition of MDA-MB-231 wild type cell proliferation. MCF-7 Tet-Off/ACSL4 cells showed greater doxorubicin, Hoechst 33342 and calcein AM efflux. In contrast, MDA-MB-231 shRNA ACSL4 cells evidenced inhibition of chemotherapeutic drug efflux. ABCG2, ABCC4, and ABCC8 were identified as ACSL4-responsive drug resistance genes whose expression was increased in MCF-7 Tet-Off/ACSL4 cells but inhibited in MDA-MB-231 shRNA ACSL4 cells. Further cell survival assays in the presence of Ko 143 and Ceefourin 1, inhibitors of ABCG2 and ABCC4, respectively, upon chemotherapeutic treatment showed greater participation of ABCG2 in anti-cancer drug resistance in cells overexpressing ACSL4. In addition, ACSL4 inhibition and chemotherapeutic treatment combined with rapamycin-induced mTOR inhibition synergically inhibited proliferation and reduced ABCG2 expression in cells overexpressing ACSL4. In sum, ACSL4 may be regarded as a novel therapeutic target regulating the expression of transporters involved in anticancer drug resistance through the mTOR pathway to restore drug sensitivity in tumors with poor prognosis for disease-free and overall survival.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Coenzima A Ligases/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Coenzima A Ligases/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Triazenos/farmacologia
4.
PLoS One ; 9(6): e100387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945345

RESUMO

The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Mitocôndrias/enzimologia , Dinâmica Mitocondrial/genética , Modelos Biológicos , Fosfoproteínas/genética , Fosforilação , Fosfosserina/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esteroides/biossíntese , Transcrição Gênica
5.
PLoS One ; 6(8): e22822, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829656

RESUMO

Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3'-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5' and 3' RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis.


Assuntos
Células Intersticiais do Testículo/metabolismo , Fosfoproteínas/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Masculino , Camundongos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
6.
Endocrinology ; 149(7): 3743-52, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18388199

RESUMO

The studies presented herein were designed to investigate the effect of mouse epidermal growth factor (mEGF) on arachidonic acid (AA) release in a clonal strain of cultured murine Leydig cells (designed MA-10). In MA-10 cells, mEGF promotes AA release and metabolism to lipoxygenated products to induce the steroidogenic acute regulatory (StAR) protein. However, the mechanism by which mEGF releases AA in these cells is not totally elucidated. We show that mEGF produces an increment in the mitochondrial AA content in a short-term incubation (30 min). This AA is released by the action of a mitochondrial acyl-CoA thioesterase (Acot2), as demonstrated in experiments in which Acot2 was down or overexpressed. This AA in turn regulates the StAR protein expression, indirect evidence of its metabolism to lipoxygenated products. We also show that mEGF induces the expression (mRNA and protein) of Acot2 and an acyl-CoA synthetase that provides the substrate, arachidonyl-CoA, to Acot2. This effect is also observed in another steroidogenic cell line, the adrenocortical Y1 cells. Taken together, our results show that: 1) mEGF can induce the generation of AA in a specific compartment of the cells, i.e. the mitochondria; 2) mEGF can up-regulate acyl-CoA synthetase and Acot2 mRNA and protein levels; and 3) mEGF-stimulated intramitochondrial AA release leads to StAR protein induction.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Animais , Ácido Araquidônico/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Células Clonais , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Tumor de Células de Leydig/genética , Tumor de Células de Leydig/metabolismo , Tumor de Células de Leydig/patologia , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfoproteínas/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
7.
FEBS Lett ; 581(21): 4023-8, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17673208

RESUMO

Recent studies demonstrated the importance of the mitochondrial ATP in the regulation of a novel long-chain fatty acid generation/export system in mitochondria of diabetic rat heart. In steroidogenic systems, mitochondrial ATP and intramitochondrial arachidonic acid (AA) generation are important for steroidogenesis. Here, we report that mitochondrial ATP is necessary for the generation and export of AA, steroid production and steroidogenic acute regulatory protein induction supported by cyclic 3'-5'-adenosine monophosphate in steroidogenic cells. These results demonstrate that ATP depletion affects AA export and provide new evidence of the existence of the fatty acid generation and export system involved in mitochondrial cholesterol transport.


Assuntos
Ácido Araquidônico/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Células Intersticiais do Testículo/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , AMP Cíclico/metabolismo , Células Intersticiais do Testículo/citologia , Masculino , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Ratos
8.
FEBS J ; 273(22): 5011-21, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17087723

RESUMO

We have investigated the direct effect of arachidonic acid on cholesterol transport in intact cells or isolated mitochondria from steroidogenic cells and the effect of cyclic-AMP on the specific release of this fatty acid inside the mitochondria. We show for the first time that cyclic-AMP can regulate the release of arachidonic acid in a specialized compartment of MA-10 Leydig cells, e.g. the mitochondria, and that the fatty acid induces cholesterol transport through a mechanism different from the classical pathway. Arachidonic acid and arachidonoyl-CoA can stimulate cholesterol transport in isolated mitochondria from nonstimulated cells. The effect of arachidonoyl-CoA is inhibited by the reduction in the expression or in the activity of a mitochondrial thioesterase that uses arachidonoyl-CoA as a substrate to release arachidonic acid. cAMP-induced arachidonic acid accumulation into the mitochondria is also reduced when the mitochondrial thioesterase activity or expression is blocked. This new feature in the regulation of cholesterol transport by arachidonic acid and the release of arachidonic acid in specialized compartment of the cells could offer novel means for understanding the regulation of steroid synthesis but also would be important in other situations such as neuropathological disorders or oncology disorders, where cholesterol transport plays an important role.


Assuntos
Ácido Araquidônico/metabolismo , Colesterol/metabolismo , AMP Cíclico/fisiologia , Células Intersticiais do Testículo/metabolismo , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Ácidos Graxos/fisiologia , Masculino , Camundongos , Mitocôndrias/fisiologia , Organelas/metabolismo , Progesterona/biossíntese , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA