Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792752

RESUMO

Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolß) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolß by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolß. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolß. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolß phosphorylation and enzymatic activity in T. cruzi epimastigotes.

2.
Placenta ; 143: 117-123, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898020

RESUMO

INTRODUCTION: Upon infection, Trypanosoma cruzi, a protozoan parasite, crosses the placental barrier and causes congenital Chagas disease. Ex vivo infection of human placental explants (HPEs) with the parasite induces apoptotic cell death. This cellular process involves changes in gene expression, which are partially regulated by miRNAs. In this study, we investigated the role of miR-512-3p, a highly expressed miRNA in the placenta, in parasite-induced apoptosis. METHODS: HPE cells were transfected with antagomirs or mimics of miR-512-3p and subsequently challenged with the parasite. The expression levels of miR-512-3p, caspase 3, caspase 8, and Livin were measured using RT-qPCR, and apoptotic cell death was analyzed based on caspase activity and DNA fragmentation assays. RESULTS: Targeted inhibition of miR-512-3p effectively prevented parasite-induced expression and enzymatic activity of caspase 3 and caspase 8. However, it did not completely prevent DNA fragmentation, indicating the involvement of other factors in this process. Furthermore, the findings suggest that Livin may be regulated by miR-512-3p. DISCUSSION: Our findings suggest that miR-512-3p modulates parasite-induced apoptosis in the trophoblast. By understanding the mechanisms involved in this process, we can gain insights into the pathogenesis of congenital Chagas disease and develop targeted therapeutic strategies.


Assuntos
Doença de Chagas , MicroRNAs , Trypanosoma cruzi , Humanos , Gravidez , Feminino , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Caspase 3/metabolismo , Caspase 8 , Doença de Chagas/genética , Apoptose/genética
3.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298423

RESUMO

Fission yeast ribosomal protein genes (RPGs) contain a HomolD box as a core promoter element required for transcription. Some of the RPGs also contain a consensus sequence named HomolE, located upstream of the HomolD box. The HomolE box acts as an upstream activating sequence (UAS), and it is able to activate transcription in RPG promoters containing a HomolD box. In this work, we identified a HomolE-binding protein (HEBP) as a polypeptide of 100 kDa, which was able to bind to the HomolE box in a Southwestern blot assay. The features of this polypeptide were similar to the product of the fhl1 gene of fission yeast. The Fhl1 protein is the homolog of the FHL1 protein of budding yeast and possesses fork-head-associated (FHA) and fork-head (FH) domains. The product of the fhl1 gene was expressed and purified from bacteria, and it was demonstrated that is able to bind the HomolE box in an electrophoretic mobility assay (EMSA), as well as being able to activate in vitro transcription from an RPG gene promoter containing HomolE boxes upstream of the HomolD box. These results indicate that the product of the fhl1 gene of fission yeast can bind to the HomolE box, and it activates the transcription of RPGs.


Assuntos
Schizosaccharomyces , Proteínas de Transporte/metabolismo , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica
4.
Cells ; 11(22)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36429121

RESUMO

DNA polymerase ß plays a fundamental role in the life cycle of Trypanosoma cruzi since it participates in the kinetoplast DNA repair and replication. This enzyme can be found in two forms in cell extracts of T. cruzi epimastigotes form. The H form is a phosphorylated form of DNA polymerase ß, while the L form is not phosphorylated. The protein kinases which are able to in vivo phosphorylate DNA polymerase ß have not been identified yet. In this work, we purified the H form of this DNA polymerase and identified the phosphorylation sites. DNA polymerase ß is in vivo phosphorylated at several amino acid residues including Tyr35, Thr123, Thr137 and Ser286. Thr123 is phosphorylated by casein kinase 2 and Thr137 and Ser286 are phosphorylated by protein kinase C-like enzymes. Protein kinase C encoding genes were identified in T. cruzi, and those genes were cloned, expressed in bacteria and the recombinant protein was purified. It was found that T. cruzi possesses three different protein kinase C-like enzymes named TcPKC1, TcPKC2, and TcPKC3. Both TcPKC1 and TcPKC2 were able to in vitro phosphorylate recombinant DNA polymerase ß, and in addition, TcPKC1 gets auto phosphorylated. Those proteins contain several regulatory domains at the N-terminus, which are predicted to bind phosphoinositols, and TcPKC1 contains a lipocalin domain at the C-terminus that might be able to bind free fatty acids. Tyr35 is phosphorylated by an unidentified protein kinase and considering that the T. cruzi genome does not contain Tyr kinase encoding genes, it is probable that Tyr35 could be phosphorylated by a dual protein kinase. Wee1 is a eukaryotic dual protein kinase involved in cell cycle regulation. We identified a Wee1 homolog in T. cruzi and the recombinant kinase was assayed using DNA polymerase ß as a substrate. T. cruzi Wee1 was able to in vitro phosphorylate recombinant DNA polymerase ß, although we were not able to demonstrate specific phosphorylation on Tyr35. Those results indicate that there exists a cell signaling pathway involving PKC-like kinases in T. cruzi.


Assuntos
Doença de Chagas , DNA Polimerase beta , Trypanosoma cruzi , Humanos , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Caseína Quinase II/metabolismo , Proteína Quinase C/metabolismo
5.
Acta Trop ; 235: 106651, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964709

RESUMO

Trypanosoma cruzi and Toxoplasma gondii are two zoonotic parasites that constitute significant human and animal health threats, causing a significant economic burden worldwide. Both parasites can be transmitted congenitally, but transmission rates for T. gondii are high, contrary to what has been observed for T. cruzi. The probability of congenital transmission depends on complex interactions between the pathogen and the host, including the modulation of host cell gene expression by miRNAs. During ex vivo infection of canine and ovine placental explants, we evaluated the expression of 3 miRNAs (miR-30e-3p, miR-3074-5p, and miR-127-3p) previously associated with parasitic and placental diseases and modulated by both parasites. In addition, we identified the possible target genes of the miRNAs by using computational prediction tools and performed GO and KEGG enrichment analyses to identify the biological functions and associated pathologies. The three miRNAs are differentially expressed in the canine and ovine placenta in response to T. cruzi and T. gondii. We conclude that the observed differential expression and associated functions might explain, at least partially, the differences in transmission rates and susceptibility to parasite infection in different species.


Assuntos
Doença de Chagas , MicroRNAs , Toxoplasma , Trypanosoma cruzi , Animais , Doença de Chagas/veterinária , Cães , Feminino , Humanos , MicroRNAs/genética , Placenta/parasitologia , Gravidez , Ovinos , Toxoplasma/genética , Trypanosoma cruzi/genética
6.
Open Biol ; 12(6): 210395, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35702995

RESUMO

MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.


Assuntos
MicroRNAs , Parasitos , Regiões 3' não Traduzidas , Animais , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita/genética , MicroRNAs/metabolismo , Parasitos/genética , Parasitos/metabolismo
7.
Pathogens ; 11(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35631061

RESUMO

Chagas disease, or American trypanosomiasis, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi) [...].

8.
Pathogens ; 11(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335686

RESUMO

Congenital Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for 22.5% of new cases each year. However, placental transmission occurs in only 5% of infected mothers and it has been proposed that the epithelial turnover of the trophoblast can be considered a local placental defense against the parasite. Thus, Trypanosoma cruzi induces cellular proliferation, differentiation, and apoptotic cell death in the trophoblast, which are regulated, among other mechanisms, by small non-coding RNAs such as microRNAs. On the other hand, ex vivo infection of human placental explants induces a specific microRNA profile that includes microRNAs related to trophoblast differentiation such as miR-512-3p miR-515-5p, codified at the chromosome 19 microRNA cluster. Here we determined the expression validated target genes of miR-512-3p and miR-515-5p, specifically human glial cells missing 1 transcription factor and cellular FLICE-like inhibitory protein, as well as the expression of the main trophoblast differentiation marker human chorionic gonadotrophin during ex vivo infection of human placental explants, and examined how the inhibition or overexpression of both microRNAs affects parasite infection. We conclude that Trypanosoma cruzi-induced trophoblast epithelial turnover, particularly trophoblast differentiation, is at least partially mediated by placenta-specific miR-512-3p and miR-515-5p and that both miRNAs mediate placental susceptibility to ex vivo infection of human placental explants. Knowledge about the role of parasite-modulated microRNAs in the placenta might enable their use as biomarkers, as prognostic and therapeutic tools for congenital Chagas disease in the future.

9.
Microorganisms ; 11(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677353

RESUMO

microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.

10.
Front Immunol ; 13: 1035589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713380

RESUMO

Introduction: Chronic Chagasic cardiomyopathy (CCC), caused by the protozoan Trypanosoma cruzi, is the most severe manifestation of Chagas disease.CCC is characterized by cardiac inflammation and fibrosis caused by a persistent inflammatory response. Following infection, macrophages secrete inflammatory mediators such as IL-1ß, IL-6, and TNF-α to control parasitemia. Although this response contains parasite infection, it causes damage to the heart tissue. Thus, the use of immunomodulators is a rational alternative to CCC. Rho-associated kinase (ROCK) 1 and 2 are RhoA-activated serine/threonine kinases that regulate the actomyosin cytoskeleton. Both ROCKs have been implicated in the polarization of macrophages towards an M1 (pro-inflammatory) phenotype. Statins are FDA-approved lipid-lowering drugs that reduce RhoA signaling by inhibiting geranylgeranyl pyrophosphate (GGPP) synthesis. This work aims to identify the effect of statins on U937 macrophage polarization and cardiac tissue inflammation and its relationship with ROCK activity during T. cruzi infection. Methods: PMA-induced, wild-type, GFP-, CA-ROCK1- and CA-ROCK2-expressing U937 macrophages were incubated with atorvastatin, or the inhibitors Y-27632, JSH-23, TAK-242, or C3 exoenzyme incubated with or without T. cruzi trypomastigotes for 30 min to evaluate the activity of ROCK and the M1 and M2 cytokine expression and secretion profiling. Also, ROCK activity was determined in T. cruzi-infected, BALB/c mice hearts. Results: In this study, we demonstrate for the first time in macrophages that incubation with T. cruzi leads to ROCK activation via the TLR4 pathway, which triggers NF-κB activation. Inhibition of ROCKs by Y-27632 prevents NF-κB activation and the expression and secretion of M1 markers, as does treatment with atorvastatin. Furthermore, we show that the effect of atorvastatin on the NF-kB pathway and cytokine secretion is mediated by ROCK. Finally, statin treatment decreased ROCK activation and expression, and the pro-inflammatory cytokine production, promoting anti-inflammatory cytokine expression in chronic chagasic mice hearts. Conclusion: These results suggest that the statin modulation of the inflammatory response due to ROCK inhibition is a potential pharmacological strategy to prevent cardiac inflammation in CCC.


Assuntos
Cardiomiopatias , Doença de Chagas , Inibidores de Hidroximetilglutaril-CoA Redutases , Trypanosoma cruzi , Humanos , Animais , Camundongos , Trypanosoma cruzi/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Quinases Associadas a rho/metabolismo , NF-kappa B/metabolismo , Atorvastatina/farmacologia , Células U937 , Macrófagos/metabolismo , Doença de Chagas/genética , Citocinas/metabolismo , Cardiomiopatias/metabolismo , Inflamação/metabolismo
11.
PLoS Negl Trop Dis ; 15(11): e0009978, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784372

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 µg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 µg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. CONCLUSIONS/SIGNIFICANCE: AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/imunologia , Nitroimidazóis/administração & dosagem , Carga Parasitária , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/imunologia , Trypanosoma cruzi/fisiologia
12.
Front Microbiol ; 12: 751648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659187

RESUMO

Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.

13.
Acta Trop ; 214: 105766, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33245906

RESUMO

Chagas disease and toxoplasmosis, caused by Trypanosoma cruzi and Toxoplasma gondii, respectively, are important zoonotic diseases affecting humans, companion animals, and livestock, responsible for major health and economic burden. Both parasites can be transmitted vertically in different mammalian species through the placenta. Of note, the transmission rate of T. cruzi is low in dogs, whereas that of T. gondii is high in sheep. The probability of congenital infection depends on complex parasite-host interactions; parasite factors, maternal and fetal immune responses and placental responses all have a role in infection establishment. Since the innate immune response is regulated, at least partially, by NF-κB signaling pathways, our main objective was to determine the effect of ex vivo infection of canine (CPE) and ovine (OPE) placental explants with both parasites, on the activation of canonical and non-canonical NF-κB pathways and its relation to infection. Here, we show that T. cruzi activates both the NF-κB canonical and non-canonical pathways in CPE and OPE, unlike T. gondii, that activates only the canonical pathway in CPE and has no effect on the non-canonical pathway in both explants. Moreover, the inhibition of either or both NF-κB pathways increases the DNA load of T. cruzi in both explants, modulates, on the other hand, T. gondii infection in a differential fashion. Overall, we conclude that the differential modulation of the NF-κB pathways by both pathogens in placental explants might explain, at least partially, the differences in transmission rates of T. cruzi and T. gondii in different mammalian species.


Assuntos
Cães/metabolismo , Placenta/parasitologia , Ovinos/metabolismo , Transdução de Sinais/imunologia , Toxoplasma/fisiologia , Trypanosoma cruzi/fisiologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata , Isoquinolinas/farmacologia , NF-kappa B/metabolismo , Nitrilas/farmacologia , Placenta/imunologia , Placenta/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonas/farmacologia , Técnicas de Cultura de Tecidos , Toxoplasma/imunologia , Trypanosoma cruzi/imunologia
14.
Front Immunol ; 11: 595250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240284

RESUMO

Trypanosoma cruzi and Toxoplasma gondii are two parasites than can be transmitted from mother to child through the placenta. However, congenital transmission rates are low for T. cruzi and high for T. gondii. Infection success or failure depends on complex parasite-host interactions in which parasites can alter host gene expression by modulating non-coding RNAs such as miRNAs. As of yet, there are no reports on altered miRNA expression in placental tissue in response to either parasite. Therefore, we infected human placental explants ex vivo by cultivation with either T. cruzi or T. gondii for 2 h. We then analyzed the miRNA expression profiles of both types of infected tissue by miRNA sequencing and quantitative PCR, sequence-based miRNA target prediction, pathway functional enrichment, and upstream regulator analysis of differentially expressed genes targeted by differentially expressed miRNAs. Both parasites induced specific miRNA profiles. GO analysis revealed that the in silico predicted targets of the differentially expressed miRNAs regulated different cellular processes involved in development and immunity, and most of the identified KEGG pathways were related to chronic diseases and infection. Considering that the differentially expressed miRNAs identified here modulated crucial host cellular targets that participate in determining the success of infection, these miRNAs might explain the differing congenital transmission rates between the two parasites. Molecules of the different pathways that are regulated by miRNAs and modulated during infection, as well as the miRNAs themselves, may be potential targets for the therapeutic control of either congenital Chagas disease or toxoplasmosis.


Assuntos
Doença de Chagas , Regulação da Expressão Gênica/imunologia , MicroRNAs/imunologia , Placenta , Toxoplasma/imunologia , Toxoplasmose , Trypanosoma cruzi/imunologia , Doença de Chagas/imunologia , Doença de Chagas/patologia , Feminino , Humanos , Placenta/imunologia , Placenta/parasitologia , Placenta/patologia , Gravidez , Toxoplasmose/imunologia , Toxoplasmose/patologia
15.
Rev. chil. fonoaudiol. (En línea) ; 19: 1-9, nov. 2020. tab
Artigo em Espanhol | LILACS | ID: biblio-1148478

RESUMO

El artículo analiza, desde los planteamientos del enfoque comunitario, una experiencia fonoaudiológica para la promoción de derechos de niños y niñas, efectuada en una organización social, con participación de un grupo de estudiantes de la carrera de Fonoaudiología de la Universidad de Chile en el año 2013. En los abordajes comunitarios, la comunidad construye conocimientos y realiza acciones para lograr el fortalecimiento de sus relaciones, bienestar social, justicia, autonomía y emancipación. El análisis de la experiencia se realiza a partir de una selección de las bitácoras de campo del equipo de estudiantes participantes, en base a los principios y dimensiones del paradigma de la construcción y transformación crítica de Maritza Montero (2004). Los resultados se dividen en tres momentos (inicio, transición y reconfiguración del trabajo), los cuales dan cuenta del grado de complejidad del proceso y los alcances obtenidos en base a las dimensiones: ontológica, epistemológica, metodológica, ética y política del enfoque comunitario. La discusión enfatiza la importancia de la reflexión crítica sobre los fundamentos y las prácticas de la Fonoaudiología en el abordaje de la comunicación y el desarrollo humano, para aportar a la justicia social desde el enfoque comunitario.


This paper analyzes, from a community-based approach, a speech, language and hearing sciences therapy experience for the promotion of children's rights, carried out in a social organization, with the participation of a group of speech, language and hearing sciences therapy undergraduate students at the Universidad de Chile in 2013. In community approaches, all community members build knowledge and take actions to build stronger social relationships and welfare, justice, autonomy and emancipation. The analysis of this experience was conducted by selecting sections from the fieldwork diaries of the team of participating students, based on the principles and dimensions of the paradigm of construction and critical transformation of Maritza Montero (2004). The results were divided into three moments (beginning, transition and reset of the work), which account for the level of complexity of the process and the goals achieved basedon the ontological, epistemological, methodological, ethical and political dimensions of the community-based approach. The discussion emphasizes the importance of critical reflection on the foundations and practices of speech, language and hearing sciences therapy in the approach to communication and human development, to contribute to social justice from a community perspective.


Assuntos
Humanos , Masculino , Feminino , Criança , Justiça Social , Comunicação , Participação da Comunidade , Fonoaudiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32393497

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, endemic in Latin America but distributed worldwide because of migration. Without appropriate treatment, the disease progresses from an acute asymptomatic phase to a chronic, progressive inflammatory cardiomyopathy causing heart failure and death. Despite specific trypanocidal therapy, heart damage progression cannot be stopped or reversed. Statins, as part of their pleiotropic actions, can modulate chagasic myocarditis by inducing the production of 15-epi-lipoxin A4 (15-epi-LXA4), a proresolution lipid mediator in inflammation. Furthermore, several reports suggest that simvastatin activates the Notch pathway after stroke in cerebral endothelial cells, enhancing blood flow by promoting angiogenesis. Thus, statins are an attractive therapeutic strategy for modulating the Notch pathway to reverse the chronic heart damage induced by T. cruzi BALB/c mice chronically infected with T. cruzi were treated with 1 mg/kg/day simvastatin or 25 µg/kg/day 15-epi-LXA4 for 20 days. During the treatment period, cardiac function was evaluated by echocardiography. At 80 days postinfection, the heart tissues were assessed for Notch 1 activity. T. cruzi infection activated the Notch 1 pathway, and simvastatin (but not 15-epi-lipoxin A4) produced a further increase in that activity, correlating with improvement in the ejection fraction and histopathologic findings typical of T. cruzi infection, including improvements in inflammation and fibrosis. Moreover, simvastatin increased the number of isolectin B4-positive cells, suggesting active angiogenesis in the chronically infected hearts without alteration of the parasitic load. Simvastatin, probably acting through the Notch 1 pathway, decreases inflammation, improving cardiac function in mice chronically infected with T. cruzi.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Animais , Cardiomiopatia Chagásica/tratamento farmacológico , Células Endoteliais , Camundongos , Camundongos Endogâmicos BALB C , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico
17.
Biomed Pharmacother ; 127: 110178, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371317

RESUMO

INTRODUCTION: Chagas disease, caused by the protozoan parasiteTrypanosoma cruzi, has no effective treatment available. On the other hand, microalgae are aquatic organisms that constitute an interesting reservoir of biologically active metabolites. Moreover, some species of green and red algae present anti-protozoan activity. Our aim was to study the antiparasitic effects of aqueous, methanolic and ethanolic extracts from different microalgae. METHODS AND RESULTS: Our results show that the methanolic extracts of S. obliquus and T. suecica as well as the ethanolic extracts of C. reinhardtii and T. suecica present trypanocidal activity on the infective extracellular trypomastigotes and intracellular amastigotes. In addition, the ethanolic extract of C. reinhardtii potentiates the activity of the conventional antichagasic drug nifurtimox. In order to identify some potential compounds with trypanocidal activity, we performed a phytochemical screening analyzing the presence of phenolic compounds, pigments and terpenoids. CONCLUSION: The different microalgae extracts, particularly the ethanolic extract ofC. reinhardtii, are promising potential candidates for the development of future natural antichagasic drugs.


Assuntos
Doença de Chagas/tratamento farmacológico , Microalgas/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Chlorocebus aethiops , Etanol/química , Metanol/química , Células Vero
18.
Int. j. odontostomatol. (Print) ; 14(1): 131-135, mar. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1056512

RESUMO

ABSTRACT: Oral Lichen planus (OLP) is one of the main inflammatory diseases of the oral mucosa that is considered as a potentially malignant disorder. The exact pathogenesis of OLP remains to be completely understood. However, presence of bacteria has been associated to the inflammatory response observed in OLP. Particularly, Helicobacter pylori a major etiological agent of gastrointestinal inflammatory diseases and risk factor for gastric cancer, has been associated to Lichen planus. Here we studied a group of Chilean patients if there is any association between the presence of Helicobacter pylori and the clinical manifestation of OLP. We found a significant difference between the patients positive for H. pylori and the age of OLP diagnosis, suggesting that oral H. pylori might induce the disease at an earlier age. However, we could not confirm a statistically significance between the presence of the bacteria and OLP.


RESUMEN: Liquen Plano Oral (LPO) es una enfermedad inflamatoria de la mucosa oral considerada como desorden potencialmente maligno. La patogénesis exacta de LPO es desconocida. Sin embargo, se ha asociado la presencia de bacterias como responsables de la inflamación observada en LPO. Particularmente, Helicobacter pylori (H. pylori), agente etiológico principal de enfermedades inflamatorias gastrointestinales y factor de riesgo de cáncer gástrico, ha sido asociado con LPO. Se estudió la posible asociación entre H. pylori y manifestaciones clínicas de LPO en un grupo de pacientes Chilenos. Se encontró diferencia significativa entre los pacientes positivos para H. pylori y la edad de diagnóstico de LPO, sugiriendo que H. pylori podría inducir la enfermedad a temprana edad. Sin embargo, no se pudo confirmar significancia estadística entre la presencia de esta bacteria y la presencia de displasia en LPO.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Helicobacter pylori/isolamento & purificação , Líquen Plano Bucal/fisiopatologia , Líquen Plano Bucal/microbiologia , Boca/microbiologia , Saliva/microbiologia , Chile , Amplificação de Genes , Estatísticas não Paramétricas , Técnicas de Amplificação de Ácido Nucleico
19.
Parasitol Int ; 76: 102065, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32001348

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, and Toxoplasma gondii, which is responsible for Toxoplasmosis, are two parasites that cause significant protozoan zoonoses and consequently important economic losses in human, companion animals and livestock. For the congenital transmission to occur, both parasites must cross the barrier present in the mammalian placenta, which differs between species. Particularly, hemochorial, endotheliochorial and epitheliochorial placental barriers are present, respectively, in human, dog and sheep. The type of placental barrier has been associated with the probability of transmission of pathogens. In this study, we used experimental placental ex vivo infection models of T. cruzi and T. gondii in the above-mentioned mammals in order to study tissue alterations and to compare infection efficiency. Here, we infected placental term explants from human, dog and sheep and analyzed tissue damage by standard histological and histochemical methods. Comparative infection efficiency was determined by quantitative PCR. Both parasites are able to infect the different placental explants; however, more T. gondii parasites were detected, and T. gondii causes a more severe tissue damage in human and canine explants than T. cruzi. The histopathological changes observed in ovine placenta explants were similar in presence of both parasites. We conclude that the infection efficiency of T. gondii is higher, compared to T. cruzi, during the ex vivo infection of human, canine and ovine placental explants. In addition, the ex vivo infection of mammalian placental explants constitutes an interesting experimental approach to study part of the infection mechanisms as well as host responses during congenital infection of both parasites.


Assuntos
Doença de Chagas/patologia , Placenta/patologia , Placenta/parasitologia , Toxoplasmose Animal/patologia , Toxoplasmose/patologia , Animais , Doença de Chagas/veterinária , Cães/parasitologia , Feminino , Humanos , Técnicas In Vitro , Gravidez , Ovinos/parasitologia , Toxoplasma/patogenicidade , Trypanosoma cruzi/patogenicidade
20.
Cell Biol Int ; 44(5): 1112-1123, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31943572

RESUMO

Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.


Assuntos
Aspirina/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana/parasitologia , Nitroimidazóis/farmacologia , Receptor Notch1/metabolismo , Sinvastatina/farmacologia , Células Cultivadas , Doença de Chagas/tratamento farmacológico , Humanos , Trypanosoma cruzi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA