Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1014169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299714

RESUMO

The spread of multidrug resistant (MDR) bacteria and resistance genes along the food chain and the environment has become a global, but silent pandemic. To face this challenge, it is of outmost importance to develop efficient strategies to reduce potential contamination by these agents. In the present study, 30 strains of Enterococcus sp., Staphylococcus sp. and Pseudomonas sp. isolated from various surfaces throughout the meat production chain in a goat and lamb slaughterhouse were characterized as MDR bacteria harboring several antibiotic resistance genes (ARGs). The antimicrobial efficacy of natural essential oil components "EOCs" (carvacrol "CA," cinnamaldehyde "CIN," eugenol "EU," geraniol "GE," limonene "LI" and thymol "TH"), HLE disinfectant solution (3-6% H2O2; 2.2-4.4% lactic acid and 12.5-25 mM EDTA in water) and EDTA was tested against these MDR bacteria. Results showed that Minimum Inhibitory Concentrations (MIC) were compound and strain dependent. In addition, the synergistic effect of these antimicrobials was evaluated at 1/2 MIC. Here our study showed particularly promising results regarding the inhibitory effect at sub-inhibitory concentrations, which were confirmed by the analysis of bacterial growth dynamics over 72 h. Furthermore, the inhibitory effect of EOCs, HLE disinfectant solution and EDTA or their combinations was studied in developing and established biofilms of MDR bacteria obtaining variable results depending on the morphological structure of the tested strain and the phenolic character of the EOCs. Importantly, the combination of EOCs with HLE or EDTA showed particularly positive results given the effective inhibition of biofilm formation. Moreover, the synergistic combinations of EU and HLE/EDTA, TH, CA, GE, LI or CIN + EDTA/HLE caused log reductions in established biofilms of several strains (1-6 log10 CFU) depending on the species and the combination used, with Pseudomonas sp. strains being the most susceptible. Given these results, we propose novel antimicrobial formulations based on the combination of sub-inhibitory concentrations of EOCs and HLE or EDTA as a highly promising alternative to currently used approaches. This novel strategy notably shows great potential to efficiently decrease the emergence and spread of MDR bacteria and ARGs in the food chain and the environment, thus supporting the decrease of resistomes and pathogenesis in clinical and industrial areas while preserving the antibiotic therapeutic action.

2.
Front Microbiol ; 12: 747043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721347

RESUMO

In this study, we determined whether pre-adapting Lactiplantibacillus pentosus strains, isolated from Aloreña green table olives, to vegetable-based edible oils improved their robustness and functionality; this may have great importance on their stress response during fermentation, storage, and digestion. Pre-adapting the strains to the corresponding oils significantly increased their probiotic functionality (e.g., auto-aggregation, co-aggregation with pathogens, and mucin adhesion), although results depended on the strain and the oil used for pre-adaptation. As such, we selected olive-adapted (TO) L. pentosus AP2-16, which exhibited improved functionality, and subjected it to transcriptomic profiling with the aim to understand the molecular mechanisms involved in the adaptation and the increased functionality. Global transcriptomic analysis of oil-adapted (olive or almond) and non-adapted (control) L. pentosus AP2-16 realized that 3,259 genes were expressed, with 2,779 mapped to the reference database. Comparative transcriptomic analysis showed that 125 genes (olive vs. control) and 108 genes (olive vs. almond) became significantly differentially expressed. TO L. pentosus AP2-16 responded by rerouting its metabolic pathways to balance energy production and storage, cell growth and survivability, host interactions (glycoconjugates), and other physiological features. As such, the pre-adaptation of lactobacilli with olive oil switches their transcriptional network to regulate robustness and functionality, possibly representing a novel approach toward the design and manufacture of probiotic products with improved stability and functionality.

3.
Front Microbiol ; 8: 891, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588563

RESUMO

Lactobacillus pentosus MP-10 is a potential probiotic lactic acid bacterium originally isolated from naturally fermented Aloreña green table olives. The entire genome sequence was annotated to in silico analyze the molecular mechanisms involved in the adaptation of L. pentosus MP-10 to the human gastrointestinal tract (GIT), such as carbohydrate metabolism (related with prebiotic utilization) and the proteins involved in bacteria-host interactions. We predicted an arsenal of genes coding for carbohydrate-modifying enzymes to modify oligo- and polysaccharides, such as glycoside hydrolases, glycoside transferases, and isomerases, and other enzymes involved in complex carbohydrate metabolism especially starch, raffinose, and levan. These enzymes represent key indicators of the bacteria's adaptation to the GIT environment, since they involve the metabolism and assimilation of complex carbohydrates not digested by human enzymes. We also detected key probiotic ligands (surface proteins, excreted or secreted proteins) involved in the adhesion to host cells such as adhesion to mucus, epithelial cells or extracellular matrix, and plasma components; also, moonlighting proteins or multifunctional proteins were found that could be involved in adhesion to epithelial cells and/or extracellular matrix proteins and also affect host immunomodulation. In silico analysis of the genome sequence of L. pentosus MP-10 is an important initial step to screen for genes encoding for proteins that may provide probiotic features, and thus provides one new routes for screening and studying this potentially probiotic bacterium.

4.
Front Microbiol ; 7: 1583, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774088

RESUMO

A collection of 31 Lactobacillus pentosus strains isolated from naturally fermented Aloreña green table olives were screened in depth in the present study for their probiotic potential. Several strains could be considered promising probiotic candidates since they showed good growth capacity and survival under simulated gastro-intestinal conditions (acidic pH of 1.5, up to 4% of bile salts and 5 mM of nitrate), good ability to auto-aggregate which may facilitate their adhesion to host cells as multiple aggregates and the subsequent displacement of pathogens. Moreover, co-aggregation of lactobacilli with pathogenic bacteria was shown with Listeria innocua, Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis as good defense strategy against gut and food pathogens. Furthermore, they exhibited adherence to intestinal and vaginal cell lines, such property could be reinforced by their capacity of biofilm formation which is also important in food matrices such as the olive surface. Their antagonistic activity against pathogenic bacteria by means of acids and plantaricins, and also their different functional properties may determine their efficacy not only in the gastro-intestinal tract but also in food matrices. Besides their ability to ferment several prebiotics, the new evidence in the present study was their capacity to ferment lactose which reinforces their use in different food matrices including dairy as a dietary adjunct to improve lactose digestibility. Lactobacillus pentosus CF2-10N was selected to have the best probiotic profile being of great interest in further studies. In conclusion, spontaneous fermented Aloreña table olives are considered a natural source of potential probiotic L. pentosus to be included as adjunct functional cultures in different fermented foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA