RESUMO
Glioblastoma is the most aggressive, malignant, and lethal brain tumor of the central nervous system. Its poor prognosis lies in its inefficient response to currently available treatments that consist of surgical resection, radiotherapy, and chemotherapy. Recently, the use of mesenchymal stem cells (MSCs) as a possible kind of cell therapy against glioblastoma is gaining great interest due to their immunomodulatory properties, tumor tropism, and differentiation into other cell types. However, MSCs seem to present both antitumor and pro-tumor properties depending on the tissue from which they come. In this work, the possibility of using MSCs to deliver therapeutic genes, oncolytic viruses, and miRNA is presented, as well as strategies that can improve their therapeutic efficacy against glioblastoma, such as CAR-T cells, nanoparticles, and exosomes.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Glioblastoma/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Células-Tronco Mesenquimais/metabolismoRESUMO
Glioblastoma, a highly aggressive and lethal brain cancer, lacks effective treatment options and has a poor prognosis. In our study, we explored the potential anti-cancer effects of sodium butyrate (SB) and celastrol (CEL) in two glioblastoma cell lines. SB, a histone deacetylase inhibitor, and CEL, derived from the tripterygium wilfordii plant, act as mTOR and proteasome inhibitors. Both can cross the blood-brain barrier, and they exhibit chemo- and radiosensitive properties in various cancer models. GB cell lines LN-405 and T98G were treated with SB and CEL. Cell viability was assessed by MTT assay and IC50 values were obtained. Gene expression of DNA repair, apoptosis, and autophagy-related genes was analyzed by RT-PCR. Cell cycle distribution was determined using flow cytometry. Viability assays using MTT assay revealed IC50 values of 26 mM and 22.7 mM for SB and 6.77 µM, and 9.11 µM for CEL in LN-405 and T98G cells, respectively. Furthermore, we examined the expression levels of DNA repair genes (MGMT, MLH-1, MSH-2, MSH-6), apoptosis genes (caspase-3, caspase-8, caspase-9), and an autophagy gene (ATG-6) using real-time polymerase chain reaction. Additionally, flow cytometry analysis revealed alterations in cell cycle distribution following treatment with SB, CEL and their combination. These findings indicate that SB and CEL may act through multiple mechanisms, including DNA repair inhibition, apoptosis induction, and autophagy modulation, to exert their anti-cancer effects in glioblastoma cells. This is the first study providing novel insights into the potential therapeutic effects of SB and CEL in glioblastoma.
Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Linhagem Celular , Apoptose , Linhagem Celular TumoralRESUMO
Glioblastoma is the most aggressive intracranial tumor [...].
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Resistencia a Medicamentos AntineoplásicosRESUMO
Glioblastoma is the most aggressive and fatal form of brain cancer. Despite new advancements in treatment, the desired outcomes have not been achieved. Temozolomide (TMZ) is the first-choice treatment for the last two decades and has improved survival rates. Emerging studies have shown that targeting epigenetics in glioblastoma can be beneficial when combined with clinically used treatments. Trichostatin A (TSA), a histone deacetylase inhibitor, has anti-cancer properties in various cancers. No data concerning the TMZ and TSA relationship was shown previously in glioblastoma therefore, we aimed to determine the likely therapeutic effect of the TMZ and TSA combination in glioblastoma. The T98G and U-373 MG, glioblastoma cell lines, were used in this study. TMZ and TSA cytotoxicity and combination index were performed by MTT assay. The expression of DNA repair genes (MGMT, MLH-1, PMS2, MSH2 and MSH6) was detected using RT-PCR. One-way analysis of variance (ANOVA) was used for statistical analysis. Combination index calculations revealed antagonistic effects of TMZ and TSA in terms of cytotoxicity. Antagonistic effects were more apparent in the T98G cell line, which is expressing MGMT relatively higher. MGMT and DNA Mismatch Repair (MMR) genes were upregulated in the T98G cell line, whereas downregulated in the U373-MG cell lines under TMZ and TSA combination treatment. It is concluded that MGMT might be playing a more active part than MMR genes in TMZ resistance to TMZ and TSA antagonism. This is the first study elucidating the TMZ and TSA relationship in cancer cell lines.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Reparo de Erro de Pareamento de DNA , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Glioblastoma is the most aggressive form of brain tumor originating from glial cells with a maximum life expectancy of 14.6 months. Despite the establishment of multiple promising therapies, the clinical outcome of glioblastoma patients is abysmal. Drug resistance has been identified as a major factor contributing to the failure of current multimodal therapy. Epigenetic modification, especially DNA methylation has been identified as a major regulatory mechanism behind glioblastoma progression. In addition, miRNAs, a class of non-coding RNA, have been found to play a role in the regulation as well as in the diagnosis of glioblastoma. The relationship between epigenetics, drug resistance, and glioblastoma progression has been clearly demonstrated. MGMT hypermethylation, leading to a lack of MGMT expression, is associated with a cytotoxic effect of TMZ in GBM, while resistance to TMZ frequently appears in MGMT non-methylated GBM. In this review, we will elaborate on known miRNAs linked to glioblastoma; their distinctive oncogenic or tumor suppressor roles; and how epigenetic modification of miRNAs, particularly via methylation, leads to their upregulation or downregulation in glioblastoma. Moreover, we will try to identify those miRNAs that might be potential regulators of MGMT expression and their role as predictors of tumor response to temozolomide treatment. Although we do not impact clinical data and survival, we open possible experimental approaches to treat GBM, although they should be further validated with clinically oriented studies.
Assuntos
Glioblastoma , MicroRNAs , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico , MicroRNAs/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/uso terapêutico , Temozolomida/uso terapêutico , Metilação de DNA/genética , Epigênese GenéticaRESUMO
Central nervous system tumors are a leading cause of cancer-related death in children and adults, with medulloblastoma (MB) and glioblastoma (GBM) being the most prevalent malignant brain tumors, respectively. Despite tremendous breakthroughs in neurosurgery, radiation, and chemotherapeutic techniques, cell heterogeneity and various genetic mutations impacting cell cycle control, cell proliferation, apoptosis, and cell invasion result in unwanted resistance to treatment approaches, with a 5-year survival rate of 70-80% for medulloblastoma, and the median survival time for patients with glioblastoma is only 15 months. Developing new medicines and utilizing combination medications may be viewed as excellent techniques for battling MB and GBM. Circular RNAs (circRNAs) can affect cancer-developing processes such as cell proliferation, cell apoptosis, invasion, and chemoresistance in this regard. As a result, several compounds have been introduced as prospective therapeutic targets in the fight against MB and GBM. The current study aims to elucidate the fundamental molecular and cellular mechanisms underlying the pathogenesis of GBM in conjunction with circRNAs. Several mechanisms were examined in detail, including PI3K/Akt/mTOR signaling, Wnt/-catenin signaling, angiogenic processes, and metastatic pathways, in order to provide a comprehensive knowledge of the involvement of circRNAs in the pathophysiology of MB and GBM.
Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , RNA Circular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Glioblastoma/metabolismo , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Via de Sinalização WntRESUMO
Neuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2/p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression. Secondly, we chose SK-N-FI (mutated at TP53) and SK-N-Be(2) (wild-type TP53) cell lines, treated them with chemotherapeutic agents (doxorubicin, etoposide, cisplatin, and melphalan) and with two isomers of retinoic acid (RA): (9-cis and all-trans). Finally, we analyzed the distribution of the cell cycle, the induction of apoptosis, and the expression levels of p53, p21, and Bcl-2 in those two cell lines. P14ARF did not present promoter methylation, homozygous deletions, and protein expression in any of the 10 neuroblastoma cell lines. One TP53 point mutation was detected in the SK-N-FI cell line. MYCN amplification was frequent, while most cell lines did not present MDM2 amplification. Treatment of SK-N-FI and SK-N-Be(2) cells with doxorubicin, etoposide, cisplatin, and melphalan increased apoptosis and blocked the cycle in G2/M, while retinoic acid isomers induced apoptosis and decreased the percentage of cells in S phase in TP53 mutated SK-N-FI cells, but not in TP53 wild-type SK-N-Be(2) cells. Treatment with cisplatin, melphalan, or 9-cis RA decreased p53 expression levels in SK-N-FI cells but not in SK-N-Be (2). The expression of p21 was not modified in either of the two cell lines. Bcl-2 levels were reduced only in SK-N-FI cells after treatment with cisplatin. However, treatments with doxorubicin, etoposide, or 9-cis-RA did not modify the levels of this protein in either of the two cell lines. In conclusion, TP53 mutated SK-N-FI cells respond better to the retinoic isomers than TP53 wild-type SK-N-Be(2) cells. Although these are in vitro results, it seems that deciphering the molecular alterations of the p53/MDM2/p14ARF signaling pathway prior to treating patients of neuroblastoma might be useful for standardizing therapies with the aim of improving survival.
RESUMO
Glioblastoma is the most malignant primary brain tumor [...].
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , HumanosRESUMO
Glioblastoma multiforme, the most common type of malignant brain tumor as well as the most aggressive one, lacks an effective therapy. Glioblastoma presents overexpression of mesenchymal markers Snail, Slug, and N-Cadherin and of the autophagic marker p62. Glioblastoma cell lines also present increased autophagy, overexpression of mesenchymal markers, Shh pathway activation, and lack of primary cilia. In this study, we aimed to evaluate the role of HDAC6 in the pathogenesis of glioblastoma, as HDAC6 is the most overexpressed of all HDACs isoforms in this tumor. We treated glioblastoma cell lines with siHDAC6. HDAC6 silencing inhibited proliferation, migration, and clonogenicity of glioblastoma cell lines. They also reversed the mesenchymal phenotype, decreased autophagy, inhibited Shh pathway, and recovered the expression of primary cilia in glioblastoma cell lines. These results demonstrate that HDAC6 might be a good target for glioblastoma treatment.
RESUMO
Glioblastoma (GB) is one of the most common types of lethal brain tumors. Although several treatment options are available including surgery, along with adjuvant chemo and radiotherapy, the disease has a poor prognosis and patients generally die within 14 months of diagnosis. GB is chemo and radio resistant. Thus, there is a critical need for new insights into GB treatment to increase the chance of therapeutic success. This is why microRNA (miRNA) is being potentially considered in the diagnosis and treatment of glioblastoma. The objective of our review is to provide a holistic picture of GB up-regulated and down-regulated miRNA, in relationship with the expression of other genes, cell signaling pathways, and their role in GB diagnosis and treatment. MiRNA treatment is being considered to be used against GB together with radiotherapy and chemotherapy. Moreover, the use of miRNA as a diagnostic tool has also begun. Knowing that miRNAs are isolated in almost all human body fluids and that there are more than 3000 miRNAs in the human genome, plus the fact that each miRNA controls hundreds of different mRNAs, there is still much study needed to explore how miRNAs relate to GB for its proliferation, progression, and inhibition.
RESUMO
Glioblastoma is the most malignant brain tumor and presents high resistance to chemotherapy and radiotherapy. Surgery, radiotherapy and chemotherapy with temozolomide are the only treatments against this tumor. New targeted therapies, including epigenetic modulators such as 3deazaneplanocin A (DZNep; an EZH2 inhibitor) and panobinostat (a histone deacetylase inhibitor) are being tested in vitro, together with temozolomide. The present study combined APR246 with DZNep, panobinostat and teomozolomide in order to explore the possibility of restoring p53 function in mutated cases of glioblastoma. Following the ChouTalalay method it was demonstrated that APR246 acts in an additive manner together with the other compounds, reducing clonogenicity and inducing apoptosis in glioblastoma cells independently of p53 status.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Quinuclidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Mutação , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Quinuclidinas/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: Giant cell glioblastoma (gcGBM) is a rare morphological variant of IDH-wildtype (IDHwt) GBM that occurs in young adults and have a slightly better prognosis than "classic" IDHwt GBM. METHODS: We studied 36 GBMs, 14 with a histopathological diagnosis of gcGBM and 22 with a giant cell component. We analyzed the genetic profile of the most frequently mutated genes in gliomas and assessed the tumor mutation load (TML) by gene-targeted next-generation sequencing. We validated our findings using The Cancer Genome Atlas (TCGA) data. RESULTS: p53 was altered by gene mutation or protein overexpression in all cases, while driver IDH1, IDH2, BRAF, or H3F3A mutations were infrequent or absent. Compared to IDHwt GBMs, gcGBMs had a significant higher frequency of TP53, ATRX, RB1, and NF1 mutations, while lower frequency of EGFR amplification, CDKN2A deletion, and TERT promoter mutation. Almost all tumors had low TML values. The high TML observed in only 2 tumors was consistent with POLE and MSH2 mutations. In the histopathological review of TCGA IDHwt, TP53-mutant tumors identified giant cells in 37% of the cases. Considering our series and that of the TCGA, patients with TP53-mutant gcGBMs had better overall survival than those with TP53wt GBMs (log-rank test, Pâ <â .002). CONCLUSIONS: gcGBMs have molecular features that contrast to "classic" IDHwt GBMs: unusually frequent ATRX mutations and few EGFR amplifications and CDKN2A deletions, especially in tumors with a high number of giant cells. TML is frequently low, although exceptional high TML suggests a potential for immune checkpoint therapy in some cases, which may be relevant for personalized medicine.
RESUMO
Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson's disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, the accumulation of aSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line was genetically engineered to overexpress aSyn at low and at high levels. aSyn cytotoxicity was assessed by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-aSyn overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-aSyn overexpressing cultures grew at high rates while showing enhanced colony formation compared to low-aSyn neurons. Cytotoxicity of aSyn overexpression was indirectly revealed by the addition of pro-oxidant rotenone. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rotenone in low-aSyn neurons, but, it did not in high-aSyn neurons. Consistent with their enhanced proliferation, high-aSyn neurons showed elevated levels of SMP30, a senescence-marker protein, and the mitosis Ki-67 marker. High-aSyn overexpression conferred to the carcinogenic neurons heightened tumorigenicity and resistance to senescence compared to low-aSyn cells, thus pointing to an inadequate level of aSyn stimulation, rather than the aSyn overload itself, as one of the factors contributing to α-synucleinopathy.
RESUMO
Current treatment against glioblastoma consists of surgical resection followed by temozolomide, with or without combined radiotherapy. Glioblastoma frequently acquires resistance to chemotherapy and/or radiotherapy. Novel therapeutic approaches are thus required. The inhibition of enhancer of zeste homolog 2 (EZH2; a histone methylase) and histone deacetylases (HDACs) are possible epigenetic treatments. Temozolomide, 3deazaneplanocin A (DZNep; an EZH2 inhibitor) and panobinostat (an HDAC inhibitor) were tested in regular and temozolomideresistant glioblastoma cells to confirm whether the compounds could behave in a synergistic, additive or antagonistic manner. A total of six commercial cell lines, two temozolomideinduced resistant cell lines and two primary cultures derived from glioblastoma samples were used. Cell lines were exposed to single treatments of the drugs in addition to all possible two and threedrug combinations. Colony formation assays, synergistic assays and reverse transcriptionquantitative PCR analysis of apoptosisassociated genes were performed. The highest synergistic combination was DZNep + panobinostat. Triple treatment was also synergistic. Reduced clonogenicity and increased apoptosis were both induced. It was concluded that the therapeutic potential of the combination of these three drugs in glioblastoma was evident and should be further explored.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Glioblastoma/patologia , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Panobinostat/administração & dosagem , Temozolomida/administração & dosagem , Células Tumorais CultivadasRESUMO
Glioblastoma or grade IV astrocytoma is the most common and lethal form of glioma. Current glioblastoma treatment strategies use surgery followed by chemotherapy with temozolomide. Despite this, numerous glioblastoma cases develop resistance to temozolomide treatments, resulting in a poor prognosis for the patients. Novel approaches are being investigated, including the inhibition of histone deacetylase 6 (HDAC6), an enzyme that deacetylates αtubulin, and whose overexpression in glioblastoma is associated with the loss of primary cilia. The aim of the present study was to treat glioblastoma cells with a selective HDAC6 inhibitor, tubastatin A, to determine if the malignant phenotype may be reverted. The results demonstrated a notable increase in acetylated αtubulin levels in treated cells, which associated with downregulation of the sonic hedgehog pathway, and may hypothetically promote ciliogenesis in those cells. Treatment with tubastatin A also reduced glioblastoma clonogenicity and migration capacities, and accelerated temozolomideinduced apoptosis. Finally, HDAC6 inhibition decreased the expression of mesenchymal markers, contributing to reverse epithelialmesenchymal transition in glioblastoma cells.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Temozolomida/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Desacetilase 6 de Histona/genética , Humanos , Fenótipo , Regulação para Cima/efeitos dos fármacosRESUMO
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. Despite its high lethality, a small proportion of patients have a relatively long overall survival (OS). Here we report a study of a series of 74 GBM samples from 29 long-term survivors ([LTS] OS ≥36 months) and 45 non-LTS. Using next-generation sequencing, we analyzed genetic alterations in the genes most frequently altered in gliomas. Approximately 20% of LTS had a mutation in the IDH1 or IDH2 (IDH) genes, denoting the relevance of this molecular prognostic factor. A new molecular group of GBMs harbored alterations in ATRX or DAXX genes in the absence of driver IDH or H3F3A mutations. These patients tended to have a slightly better prognosis, to be younger at diagnosis, and to present frontal or temporal tumors, and, morphologically, to present giant tumor cells. A significant fraction of LTS GBM patients had tumors with 1 or more alterations in the relevant GBM signaling pathways (RTK/PI3K, TP53 and RB1). In these patients, the PDGFRA alteration is suggested to be a favorable molecular factor. Our findings here are relevant for developing future targeted therapies and for identifying molecular prognostic factors in GBM patients.
Assuntos
Neoplasias Encefálicas/genética , Sobreviventes de Câncer , Marcação de Genes/métodos , Glioblastoma/genética , Mutação/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Feminino , Glioblastoma/diagnóstico , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
There are various theories to explain the pathophysiology of depression and support its diagnosis and treatment. The roles of monoamines, brain-derived neurotrophic factor (BDNF), and Wnt signaling are well researched, but sonic hedgehog (Shh) signaling and its downstream transcription factor Gli1 are not well studied in depression. Shh signaling plays a fundamental role in embryonic development and adult hippocampal neurogenesis and also involved in the growth of cancer. In this article, we summarize the evidence for the Shh signaling pathway in depression and the potential crosstalk of Shh with Wnt and BDNF. Antidepressants are known to upregulate the adult hippocampal neurogenesis to treat depression. Shh plays an important role in adult hippocampal neurogenesis, and its downstream signaling components regulate the synthesis of Wnt proteins. Moreover, the expression of Gli1 and Smo is downregulated in depression. BDNF and Wnt signaling are also regulated by various available antidepressants, so there is the possibility that Shh may be involved in the pathophysiology of depression. Therefore, the crosstalk between the Shh, Wnt, and BDNF signaling pathways is being discussed to identify the potential targets. Specifically, the potential role of the Shh signaling pathway in depression is explored as a new target for better therapies for depression.
Assuntos
Antidepressivos/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas Hedgehog/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Antidepressivos/administração & dosagem , Sistemas de Liberação de Medicamentos/tendências , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 60-70% of all gliomas. Current median patient survival time is 14-16 months after diagnosis. Numerous efforts in therapy have not significantly altered the nearly uniform lethality of this malignancy. The Transforming Growth Factor beta (TGF-ß) signaling pathway plays a key role in GBM and is implicated in proliferation, invasion and therapy resistance. Several inhibitors of the TGF-ß pathway have entered clinical trials or are under development. In this work, the therapeutic potential of P144, a TGF-ß inhibitor peptide, was analyzed. P144 decreased proliferation, migration, invasiveness, and tumorigenicity in vitro, whereas apoptosis and anoikis were significantly increased for GBM cell lines. SMAD2 phosphorylation was reduced, together with a downregulation of SKI and an upregulation of SMAD7 at both transcriptional and translational levels. Additionally, P144 was able to impair tumor growth and increase survival in an in vivo flank model. Our findings suggest a potential effect of P144 in vitro and in vivo that is mediated by regulation of transcriptional target genes of the TGF-ß pathway, suggesting a therapeutic potential of P144 for GBM treatment.