Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 38, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454481

RESUMO

BACKGROUND: The clinical utility of gene signatures in older breast cancer patients remains unclear. We aimed to determine signature prognostic capacity in this patient subgroup. METHODS: Research versions of the genomic grade index (GGI), 70-gene, recurrence score (RS), cell cycle score (CCS), PAM50 risk-of-recurrence proliferation (ROR-P), and PAM50 signatures were applied to 39 breast cancer datasets (N = 9583). After filtering on age ≥ 70 years, and the presence of estrogen receptor (ER) and survival data, 871 patients remained. Signature prognostic capacity was tested in all (n = 871), ER-positive/lymph node-positive (ER + /LN + , n = 335) and ER-positive/lymph node-negative (ER + /LN-, n = 374) patients using Kaplan-Meier and multivariable Cox-proportional hazard (PH) modelling. RESULTS: All signatures were statistically significant in Kaplan-Meier analysis of all patients (Log-rank P < 0.001). This significance remained in multivariable analysis (Cox-PH, P ≤ 0.05). In ER + /LN + patients all signatures except PAM50 were significant in Kaplan-Meier analysis (Log-rank P ≤ 0.05) and remained so in multivariable analysis (Cox-PH, P ≤ 0.05). In ER + /LN- patients all except RS were significant in Kaplan-Meier analysis (Log-rank P ≤ 0.05) but only the 70-gene, CCS, ROR-P, and PAM50 signatures remained so in multivariable analysis (Cox-PH, P ≤ 0.05). CONCLUSIONS: We found that gene signatures provide prognostic information in survival analyses of all, ER + /LN + and ER + /LN- older (≥ 70 years) breast cancer patients, suggesting a potential role in aiding treatment decisions in older patients.


Assuntos
Neoplasias da Mama , Humanos , Idoso , Feminino , Neoplasias da Mama/metabolismo , Prognóstico , Antineoplásicos Hormonais/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Estimativa de Kaplan-Meier
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436561

RESUMO

Enrichment analysis (EA) is a common approach to gain functional insights from genome-scale experiments. As a consequence, a large number of EA methods have been developed, yet it is unclear from previous studies which method is the best for a given dataset. The main issues with previous benchmarks include the complexity of correctly assigning true pathways to a test dataset, and lack of generality of the evaluation metrics, for which the rank of a single target pathway is commonly used. We here provide a generalized EA benchmark and apply it to the most widely used EA methods, representing all four categories of current approaches. The benchmark employs a new set of 82 curated gene expression datasets from DNA microarray and RNA-Seq experiments for 26 diseases, of which only 13 are cancers. In order to address the shortcomings of the single target pathway approach and to enhance the sensitivity evaluation, we present the Disease Pathway Network, in which related Kyoto Encyclopedia of Genes and Genomes pathways are linked. We introduce a novel approach to evaluate pathway EA by combining sensitivity and specificity to provide a balanced evaluation of EA methods. This approach identifies Network Enrichment Analysis methods as the overall top performers compared with overlap-based methods. By using randomized gene expression datasets, we explore the null hypothesis bias of each method, revealing that most of them produce skewed P-values.


Assuntos
Benchmarking , RNA-Seq
3.
NAR Genom Bioinform ; 4(4): lqac093, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36458021

RESUMO

A vast scenario of potential disease mechanisms and remedies is yet to be discovered. The field of Network Medicine has grown thanks to the massive amount of high-throughput data and the emerging evidence that disease-related proteins form 'disease modules'. Relying on prior disease knowledge, network-based disease module detection algorithms aim at connecting the list of known disease associated genes by exploiting interaction networks. Most existing methods extend disease modules by iteratively adding connector genes in a bottom-up fashion, while top-down approaches remain largely unexplored. We have created TOPAS, an iterative approach that aims at connecting the largest number of seed nodes in a top-down fashion through connectors that guarantee the highest flow of a Random Walk with Restart in a network of functional associations. We used a corpus of 382 manually selected functional gene sets to benchmark our algorithm against SCA, DIAMOnD, MaxLink and ROBUST across four interactomes. We demonstrate that TOPAS outperforms competing methods in terms of Seed Recovery Rate, Seed to Connector Ratio and consistency during module detection. We also show that TOPAS achieves competitive performance in terms of biological relevance of detected modules and scalability.

4.
Front Genet ; 13: 855766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620466

RESUMO

Functional analysis of gene sets derived from experiments is typically done by pathway annotation. Although many algorithms exist for analyzing the association between a gene set and a pathway, an issue which is generally ignored is that gene sets often represent multiple pathways. In such cases an association to a pathway is weakened by the presence of genes associated with other pathways. A way to counteract this is to cluster the gene set into more homogenous parts before performing pathway analysis on each module. We explored whether network-based pre-clustering of a query gene set can improve pathway analysis. The methods MCL, Infomap, and MGclus were used to cluster the gene set projected onto the FunCoup network. We characterized how well these methods are able to detect individual pathways in multi-pathway gene sets, and applied each of the clustering methods in combination with four pathway analysis methods: Gene Enrichment Analysis, BinoX, NEAT, and ANUBIX. Using benchmarks constructed from the KEGG pathway database we found that clustering can be beneficial by increasing the sensitivity of pathway analysis methods and by providing deeper insights of biological mechanisms related to the phenotype under study. However, keeping a high specificity is a challenge. For ANUBIX, clustering caused a minor loss of specificity, while for BinoX and NEAT it caused an unacceptable loss of specificity. GEA had very low sensitivity both before and after clustering. The choice of clustering method only had a minor effect on the results. We show examples of this approach and conclude that clustering can improve overall pathway annotation performance, but should only be used if the used enrichment method has a low false positive rate.

5.
Bioinformatics ; 38(9): 2659-2660, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35266519

RESUMO

MOTIVATION: Pathway annotation tools are indispensable for the interpretation of a wide range of experiments in life sciences. Network-based algorithms have recently been developed which are more sensitive than traditional overlap-based algorithms, but there is still a lack of good online tools for network-based pathway analysis. RESULTS: We present PathwAX II-a pathway analysis web tool based on network crosstalk analysis using the BinoX algorithm. It offers several new features compared with the first version, including interactive graphical network visualization of the crosstalk between a query gene set and an enriched pathway, and the addition of Reactome pathways. AVAILABILITY AND IMPLEMENTATION: PathwAX II is available at http://pathwax.sbc.su.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Fenômenos Fisiológicos Celulares
6.
Sci Rep ; 11(1): 20687, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667255

RESUMO

This analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that drugs on average target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the maximum number of disease modules targeted per drug increases from 158 to 229 when drug targets are neighbor-extended. Moreover, our results highlight that drug repurposing is more dependent on target proteins being shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , SARS-CoV-2 , Antivirais/farmacologia , Teorema de Bayes , Biologia Computacional/métodos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Humanos , Polifarmacologia , Mapeamento de Interação de Proteínas , Estados Unidos , United States Food and Drug Administration
7.
J Mol Biol ; 433(11): 166835, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33539890

RESUMO

FunCoup (https://funcoup.sbc.su.se) is one of the most comprehensive functional association networks of genes/proteins available. Functional associations are inferred by integrating different types of evidence using a redundancy-weighted naïve Bayesian approach, combined with orthology transfer. FunCoup's high coverage comes from using eleven different types of evidence, and extensive transfer of information between species. Since the latest update of the database, the availability of source data has improved drastically, and user expectations on a tool for functional associations have grown. To meet these requirements, we have made a new release of FunCoup with updated source data and improved functionality. FunCoup 5 now includes 22 species from all domains of life, and the source data for evidences, gold standards, and genomes have been updated to the latest available versions. In this new release, directed regulatory links inferred from transcription factor binding can be visualized in the network viewer for the human interactome. Another new feature is the possibility to filter by genes expressed in a certain tissue in the network viewer. FunCoup 5 further includes the SARS-CoV-2 proteome, allowing users to visualize and analyze interactions between SARS-CoV-2 and human proteins in order to better understand COVID-19. This new release of FunCoup constitutes a major advance for the users, with updated sources, new species and improved functionality for analysis of the networks.


Assuntos
Bases de Dados Factuais , Redes Reguladoras de Genes , Especificidade de Órgãos , Mapas de Interação de Proteínas , Teorema de Bayes , COVID-19/metabolismo , COVID-19/virologia , Genoma , Interações entre Hospedeiro e Microrganismos , Humanos , Ligação Proteica , Proteínas , Proteoma , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Fatores de Transcrição
8.
Bioinform Adv ; 1(1): vbab010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36700096

RESUMO

Motivation: Pathway annotation is a vital tool for interpreting and giving meaning to experimental data in life sciences. Numerous tools exist for this task, where the most recent generation of pathway enrichment analysis tools, network-based methods, utilize biological networks to gain a richer source of information as a basis of the analysis than merely the gene content. Network-based methods use the network crosstalk between the query gene set and the genes in known pathways, and compare this to a null model of random expectation. Results: We developed PathBIX, a novel web application for network-based pathway analysis, based on the recently published ANUBIX algorithm which has been shown to be more accurate than previous network-based methods. The PathBIX website performs pathway annotation for 21 species, and utilizes prefetched and preprocessed network data from FunCoup 5.0 networks and pathway data from three databases: KEGG, Reactome, and WikiPathways. Availability: https://pathbix.sbc.su.se/. Contact: erik.sonnhammer@scilifelab.se. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

9.
Sci Rep ; 10(1): 13585, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788619

RESUMO

Pathway enrichment analysis is the most common approach for understanding which biological processes are affected by altered gene activities under specific conditions. However, it has been challenging to find a method that efficiently avoids false positives while keeping a high sensitivity. We here present a new network-based method ANUBIX based on sampling random gene sets against intact pathway. Benchmarking shows that ANUBIX is considerably more accurate than previous network crosstalk based methods, which have the drawback of modelling pathways as random gene sets. We demonstrate that ANUBIX does not have a bias for finding certain pathways, which previous methods do, and show that ANUBIX finds biologically relevant pathways that are missed by other methods.

10.
Sci Rep ; 10(1): 10390, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587318

RESUMO

Cell cultures are often used to study physiological processes in health and disease. It is well-known that cells change their gene expression in vitro compared to in vivo, but it is rarely experimentally addressed. High glucose is a known trigger of apoptosis in proximal tubular cells (PTC). Here we used RNA-seq to detect differentially expressed genes in cultures of primary rat PTC, 3 days old, compared to cells retrieved directly from rat outer renal cortex and between PTC exposed to 15 mM glucose and control for 8 h. The expression of 6,174 genes was significantly up- or downregulated in the cultures of PTC compared to the cells in the outer renal cortex. Most altered were mitochondrial and metabolism related genes. Gene expression of proapoptotic proteins were upregulated and gene expression of antiapoptotic proteins were downregulated in PTC. Expression of transporter related genes were generally downregulated. After 8 h, high glucose had not altered the gene expression in PTC. The current study provides evidence that cells alter their gene expression in vitro compared to in vivo and suggests that short-term high glucose exposure can trigger apoptosis in PTC without changing the gene expression levels of apoptotic proteins.


Assuntos
Apoptose , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Córtex Renal/metabolismo , Túbulos Renais Proximais/metabolismo , RNA-Seq/métodos , Animais , Células Cultivadas , Córtex Renal/efeitos dos fármacos , Córtex Renal/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Edulcorantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA