Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731850

RESUMO

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Assuntos
Ciclo Celular , Podofilotoxina , Proteômica , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteômica/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611722

RESUMO

Podophyllotoxin, a cyclolignan natural product, has been the object of extensive chemomodulation to obtain better chemotherapeutic agents. Among the obtained podophyllotoxin derivatives, podophyllic aldehyde showed very interesting potency and selectivity against several tumoral cell lines, so it became our lead compound for further modifications, as described in this work, oriented toward the enlargement of the cyclolignan skeleton. Thus, modifications performed at the aldehyde function included nucleophilic addition reactions and the incorporation of the aldehyde carbon into several five-membered rings, such as thiazolidinones and benzo-fused azoles. The synthesized derivatives were evaluated against several types of cancer cells, and although some compounds were cytotoxic at the nanomolar range, most of them were less potent and less selective than the parent compound podophyllic aldehyde, with the most potent being those having the lactone ring of podophyllotoxin. In silico ADME evaluation predicted good druggability for most of them. The results indicate that the γ-lactone ring is important for potency, while the α,ß-unsaturated aldehyde is necessary to induce selectivity in these cyclolignans.


Assuntos
Antineoplásicos , Podofilotoxina , Humanos , Podofilotoxina/farmacologia , Esqueleto , Hipertrofia , Aldeídos , Lactonas , Compostos Radiofarmacêuticos
3.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477484

RESUMO

Terpenylquinones are mixed biogenesis primary or secondary metabolites widespread in Nature with many biological activities, including the antineoplastic cytotoxicity, that have inspired this work. Here, we present a cytotoxic structure-activity relationship of several diterpenylhydroquinone (DTHQ) derivatives, obtained from the natural labdane diterpenoid myrceocommunic acid used as starting material. Different structural modifications, that changed the functionality and stereochemistry of the decalin, have been implemented on the bicyclic core through epoxidation, ozonolysis or decarboxylation, and through induction of biomimetic breaks and rearrangements of the diterpene skeleton. All the isomers generated were completely characterized by spectroscopic procedures. The resulting compounds have been tested in vitro on cultured cancer cells, showing their relevant antineoplastic cytotoxicity, with GI50 values in the µM and sub-µM range. The rearranged compound 8 showed the best cytotoxic results, with GI50 at the submicromolar range, retaining the cytotoxicity level of the parent compounds. In this report, the versatility of the labdane skeleton for chemical transformation and the interest to continue using structural modifications to obtain new bioactive compounds are demonstrated.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células , Diterpenos/química , Hidroquinonas/química , Neoplasias/tratamento farmacológico , Humanos , Estrutura Molecular , Neoplasias/patologia , Células Tumorais Cultivadas
4.
Molecules ; 24(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986933

RESUMO

Quinones are secondary metabolites of higher plants associated with many biological activities, including antiviral effects and cytotoxicity. In this study, the anti-herpetic and anti-dengue evaluation of 27 terpenyl-1,4-naphthoquinone (NQ), 1,4-anthraquinone (AQ) and heterocycle-fused quinone (HetQ) derivatives was done in vitro against Human Herpesvirus (HHV) type 1 and 2, and Dengue virus serotype 2 (DENV-2). The cytotoxicity on HeLa and Jurkat tumor cell lines was also tested. Using plaque forming unit assays, cell viability assays and molecular docking, we found that NQ 4 was the best antiviral compound, while AQ 11 was the most active and selective molecule on the tested tumor cells. NQ 4 showed a fair antiviral activity against Herpesviruses (EC50: <0.4 µg/mL, <1.28 µM) and DENV-2 (1.6 µg/mL, 5.1 µM) on pre-infective stages. Additionally, NQ 4 disrupted the viral attachment of HHV-1 to Vero cells (EC50: 0.12 µg/mL, 0.38 µM) with a very high selectivity index (SI = 1728). The in silico analysis predicted that this quinone could bind to the prefusion form of the E glycoprotein of DENV-2. These findings demonstrate that NQ 4 is a potent and highly selective antiviral compound, while suggesting its ability to prevent Herpes and Dengue infections. Additionally, AQ 11 can be considered of interest as a leader for the design of new anticancer agents.


Assuntos
Antraquinonas/química , Antivirais/química , Antivirais/farmacologia , Naftoquinonas/química , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vírus da Dengue/efeitos dos fármacos , Células HeLa , Herpesviridae/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Estrutura Molecular , Células Vero
5.
Mar Drugs ; 16(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134616

RESUMO

The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/farmacologia , Hidroquinonas/farmacologia , Quinonas/farmacologia , Terpenos/farmacologia , Animais , Produtos Biológicos/química , Hidroquinonas/química , Quinonas/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA