Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biochem Pharmacol ; 217: 115840, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783376

RESUMO

Ethanol consumption activates renin-angiotensin-aldosterone system (RAAS), which plays a major role in the pro-contractile and hypertensive effects linked to ethanol. We hypothesized that ethanol consumption induces loss of the anticontractile effect of perivascular adipose tissue (PVAT)through RAAS-mediated mechanisms. We examined the contribution of angiotensin II type 1 receptors (AT1R) to ethanol-induced PVAT dysfunction. With this purpose, male Wistar Hannover rats were treated with ethanol 20 % (in volume ratio) and/or losartan (antagonist of AT1R; 10 mg/kg/day, gavage) for 9 weeks. Losartan prevented the increase in blood pressure and the loss of the anticontractile effect of PVAT induced by ethanol consumption. PVAT dysfunction occurred after 3 and 9 weeks of treatment with ethanol in an endothelium-dependent manner. Blockade of AT1R prevented ethanol-induced reduction of adiponectin levels in PVAT from ethanol-treated rats. Functional assays revealed that ethanol impaired the anticontractile effect of PVAT-derived angiotensin (1-7) and endothelial nitric oxide (NO). In conclusion, AT1R are implicated in ethanol-induced loss of the anticontractile effect of PVAT. In PVAT, AT1R activation decreases the production of adiponectin, a PVAT-derived factor that promotes vasorelaxation in an endothelium-dependent manner. In the endothelium, AT1R favors the production of superoxide (O2•-) leading to a reduction in NO bioavailability. These responses impair the vasodilator action induced by PVAT-derived angiotensin (1-7), which occurs via Mas receptors located in endothelial cells. Ethanol-induced PVAT dysfunction favors vascular hypercontractility, a response that could contribute to the hypertensive state associated with ethanol consumption.


Assuntos
Adiponectina , Hipertensão , Masculino , Ratos , Animais , Adiponectina/farmacologia , Losartan/farmacologia , Etanol/toxicidade , Células Endoteliais , Vasoconstrição , Ratos Wistar , Tecido Adiposo , Óxido Nítrico/farmacologia
2.
Vascul Pharmacol ; 152: 107211, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37607602

RESUMO

INTRODUCTION: Increased matrix metalloproteinase (MMP)-2 activity contributes to increase vascular smooth muscle cell (VSMC) proliferation in the aorta in early hypertension by cleaving many proteins of the extracellular matrix. Cleaved products from type I collagen may activate focal adhesion kinases (FAK) that trigger migration and proliferation signals in VSMC. We therefore hypothesized that increased activity of MMP-2 proteolyzes type I collagen in aortas of hypertensive rats, and thereby, induces FAK activation, thus leading to increased VSMC proliferation and hypertrophic remodeling in early hypertension. METHODS: Male Sprague-Dawley rats were submitted to renovascular hypertension by the two kidney-one clip (2K1C) model and treated with doxycycline (30 mg/kg/day) by gavage from the third to seventh-day post-surgery. Controls were submitted to sham surgery. Systolic blood pressure (SBP) was measured daily by tail-cuff plethysmography and the aortas were processed for zymography and Western blot for MMP-2, pFAK/FAK, integrins and type I collagen. Mass spectrometry, morphological analysis and Ki67 immunofluorescence were also done to identify collagen changes and VSMC proliferation. A7r5 cells were stimulated with collagen and treated with the MMP inhibitors (doxycycline or ARP-100), and with the FAK inhibitor PND1186 for 24 h. Cells were lysed and evaluated by Western blot for pFAK/FAK. RESULTS: 2K1C rats developed elevated SBP in the first week as well as increased expression and activity of MMP-2 in the aorta (p < 0.05 vs. Sham). Treatment with doxycycline reduced both MMP activity and type I collagen proteolysis in aortas of 2K1C rats (p < 0.05). Increased pFAK/FAK and increased VSMC proliferation (p < 0.05 vs. Sham groups) were also seen in the aortas of 2K1C and doxycycline decreased both parameters (p < 0.05). Higher proliferation of VSMC contributed to hypertrophic remodeling as seen by increased media/lumen ratio and cross sectional area (p < 0.05 vs Sham groups). In cell culture, MMP-2 cleaves collagen, an effect reversed by MMP inhibitors (p < 0.05). Increased levels of pFAK/FAK were observed when collagen was added in the culture medium (p < 0.05 vs control) and MMP and FAK inhibitors reduced this effect. CONCLUSIONS: Increase in MMP-2 activity proteolyzes type I collagen in the aortas of 2K1C rats and contributes to activate FAK and induces VSMC proliferation during the initial phase of hypertension.


Assuntos
Hipertensão , Metaloproteinase 2 da Matriz , Animais , Masculino , Ratos , Aorta , Proliferação de Células , Colágeno Tipo I , Doxiciclina/farmacologia , Proteína-Tirosina Quinases de Adesão Focal , Inibidores de Metaloproteinases de Matriz/farmacologia , Músculo Liso Vascular , Proteólise , Ratos Sprague-Dawley
3.
Eur J Pharmacol ; 949: 175723, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059378

RESUMO

The effects on blood pressure produced byethanol consumption include both vasoconstriction and activation of the renin-angiotensin-aldosterone system (RAAS), although the detailed relationship between these processes is yet to be accomplished. Here, we sought to investigate the contribution of mineralocorticoid receptors (MR) to ethanol-induced hypertension and vascular hypercontractility. We analyzed blood pressure and vascular function of male Wistar Hannover rats treated with ethanol for five weeks. The contribution of the MR pathway to the cardiovascular effects of ethanol was evaluated with potassium canrenoate, a MR antagonist (MRA). Blockade of MR prevented ethanol-induced hypertension and hypercontractility of endothelium-intact and -denuded aortic rings. Ethanol up-regulated cyclooxygenase (COX)2 and augmented vascular levels of both reactive oxygen species (ROS) and thromboxane (TX)B2, a stable metabolite of TXA2. These responses were abrogated by MR blockade. Hyperreactivity to phenylephrine induced by ethanol consumption was reversed by tiron [a scavenger of superoxide (O2∙-)], SC236 (a selective COX2 inhibitor) or SQ29548 (an antagonist of TP receptors). Treatment with the antioxidant apocynin prevented the vascular hypercontractility, as well as the increases in COX2 expression and TXA2 production induced by ethanol consumption. Our study has identified novel mechanisms through which ethanol consumption promotes its deleterious effects in the cardiovascular system. We provided evidence for a role of MR in the vascular hypercontractility and hypertension associated with ethanol consumption. The MR pathway triggers vascular hypercontractility through ROS generation, up-regulation of COX2 and overproduction of TXA2, which will ultimately induce vascular contraction.


Assuntos
Hipertensão , Receptores de Mineralocorticoides , Ratos , Animais , Masculino , Ciclo-Oxigenase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Wistar , Regulação para Cima , Receptores de Mineralocorticoides/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Vasoconstrição , Etanol/efeitos adversos , Endotélio Vascular
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 939-949, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36527481

RESUMO

Oxidative stress and MMP activity are found in the hearts and arteries in hypertension and contribute to the resulting hypertrophy and dysfunction. Quercetin is a flavonoid that reduces MMP-2 activity and ameliorates hypertrophic vascular remodeling of hypertension. The hypothesis is that treatment of hypertensive rats with quercetin ameliorates coronary maladaptive remodeling and decreases hypertrophic cardiac dysfunction by decreasing oxidative stress and MMP activity. Male Sprague-Dawley two-kidney, one-clip (2K1C) and Sham rats were treated with quercetin (10 mg/kg/day) or its vehicle for 8 weeks by gavage. Rats were analyzed at 10 weeks of hypertension. Systolic blood pressure (SBP) was examined by tail-cuff plethysmography. Cardiac left ventricles were used to determine MMP activity by in situ zymography and oxidative stress by dihydroethidium. Immunofluorescence was performed to detect transforming growth factor (TGF)-ß and nuclear factor kappa B (NFkB). Morphological analyses of heart and coronary arteries were done by H&E and picrosirius red, and cardiac function was measured by Langendorff. SBP was increased in 2K1C rats, and quercetin did not reduce it. However, quercetin decreased both oxidative stress and TGF-ß in the left ventricles of 2K1C rats. Quercetin also decreased the accentuated MMP activity in left ventricles and coronary arteries of 2K1C rats. Quercetin ameliorated hypertension-induced coronary arterial hypertrophic remodeling, although it did not reduce cardiac hypertrophic remodeling and dysfunction. Quercetin decreases cardiac oxidative stress and TGF-ß and MMP activity in addition to improving coronary remodeling, yet does not ameliorate cardiac dysfunction in 2K1C rats.


Assuntos
Hipertensão Renovascular , Hipertensão , Nefropatias , Ratos , Masculino , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Hipertensão Renovascular/metabolismo , Vasos Coronários/metabolismo , Ratos Wistar , Ratos Sprague-Dawley , Hipertensão/tratamento farmacológico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Pressão Sanguínea , Fator de Crescimento Transformador beta/metabolismo
5.
Biochem Pharmacol ; 190: 114633, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058185

RESUMO

Proton pump inhibitors (PPI) are commonly used drugs that may increase the cardiovascular risk by mechanisms not entirely known. We examined whether the PPI omeprazole promotes vascular oxidative stress mediated by xanthine oxidoreductase (XOR) leading to activation of matrix metalloproteinases (MMPs) and vascular remodeling. We studied Wistar rats treated with omeprazole (or vehicle) combined with the XOR inhibitor allopurinol (or vehicle) for four weeks. Systolic blood pressure (SBP) measured by tail-cuff plethysmography was not affected by treatments. Omeprazole treatment increased the aortic cross-sectional area and media/lumen ratio by 25% (P < 0.05). Omeprazole treatment decreased gastric pH and induced vascular remodeling accompanied by impaired endothelium-dependent aortic responses (assessed with isolated aortic ring preparation) to acetylcholine (P < 0.05). Omeprazole increased vascular active MMP-2 expression and activity assessed by gel zymography and in situ zymography, respectively (P < 0.05). Moreover, omeprazole enhanced vascular oxidative stress assessed in situ with the fluorescent dye DHE and with the lucigenin chemiluminescence assay (both P < 0.05). All these biochemical changes caused by omeprazole were associated with increased vascular XOR activity (but not XOR expression assessed by Western blot) and treatment with allopurinol fully prevented them (all P < 0.05). Importantly, treatment with allopurinol prevented the vascular dysfunction and remodeling caused by omeprazole. Our results suggest that the long-term use of omeprazole induces vascular dysfunction and remodeling by promoting XOR-derived reactive oxygen species formation and MMP activation. These findings provide evidence of a new mechanism that may underlie the unfavorable cardiovascular outcomes observed with PPI therapy. Clinical studies are warranted to validate our findings.


Assuntos
Metaloproteinases da Matriz/metabolismo , Omeprazol/farmacologia , Xantina Desidrogenase/metabolismo , Alopurinol/farmacologia , Animais , Antiulcerosos/farmacologia , Aorta/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Masculino , Metaloproteinases da Matriz/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Remodelação Vascular , Xantina Desidrogenase/genética
6.
Can J Physiol Pharmacol ; 99(10): 1016-1025, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33887163

RESUMO

Overexpression of the inducible isoform of the enzyme nitric oxide synthase (iNOS) has been associated to pathological processes in the kidney. Ethanol consumption induces the renal expression of iNOS; however, the contribution of this enzyme to the deleterious effects of ethanol in the kidney remains elusive. We examined whether iNOS plays a role in the renal dysfunction and oxidative stress induced by ethanol consumption. With this purpose, male C57BL/6 wild-type (WT) or iNOS-deficient (iNOS-/-) mice were treated with ethanol (20% v/v) for 10 weeks. Treatment with ethanol increased the expression of Nox4 as well as the concentration of thiobarbituric acid reactive substances and the levels of tumor necrosis factor α in the renal cortex of WT but not iNOS-/- mice. Augmented serum levels of creatinine and increased systolic blood pressure were found in WT and iNOS-/- mice treated with ethanol. WT mice treated with ethanol showed increased production of reactive oxygen species and myeloperoxidase activity, but these responses were attenuated in iNOS-/- mice. We concluded that iNOS played a role in ethanol-induced oxidative stress and pro-inflammatory cytokine production in the kidney. These are mechanisms that may contribute to the renal toxicity induced by ethanol.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Citocinas/metabolismo , Etanol/farmacologia , Inflamação/patologia , Nefropatias/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/patologia , Animais , Anti-Infecciosos Locais/toxicidade , Creatinina/metabolismo , Inflamação/enzimologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/biossíntese , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Cardiovasc Toxicol ; 21(3): 224-235, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067693

RESUMO

Changes in redox state are described in the early stages of ethanol-induced cardiac toxicity. Here, we evaluated whether nebivolol would abrogate ethanol-induced redox imbalance in the heart. Male Wistar rats were treated with a solution of ethanol (20% v/v) for 3 weeks. Treatment with nebivolol (10 mg/kg/day; p.o. gavage) prevented the increase of both superoxide (O2•-) and thiobarbituric acid reactive substances (TBARS) in the left ventricle of rats chronically treated with ethanol. Neither ethanol nor nebivolol affected the expression of Nox4, p47phox, or Rac-1. Nebivolol prevented ethanol-induced increase of Nox2 expression in the left ventricle. Superoxide dismutase (SOD) activity as well as the concentration of reduced glutathione (GSH) was not altered by ethanol or nebivolol. Augmented catalase activity was detected in the left ventricle of both ethanol- and nebivolol-treated rats. Treatment with nebivolol, but not ethanol increased eNOS expression in the left ventricle. No changes in the activity of matrix metalloproteinase (MMP)2 or in the expressions of MMP2, MMP9, and tissue inhibitor metalloproteinase (TIMP)1 were detected after treatment with ethanol or nebivolol. However, ethanol increased the expression of TIMP2, and this response was prevented by nebivolol. Our results provided novel insights into the mechanisms underlying the early stages of the cardiac injury induced by ethanol consumption. We demonstrated that Nox2/NADPH oxidase-derived ROS play a role in ethanol-induced lipoperoxidation and that this response was prevented by nebivolol. In addition, we provided evidence that MMPs are not activated in the early stages of ethanol-induced cardiac toxicity.


Assuntos
Cardiomiopatia Alcoólica/prevenção & controle , Ventrículos do Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , Nebivolol/farmacologia , Superóxidos/metabolismo , Animais , Cardiomiopatia Alcoólica/enzimologia , Cardiomiopatia Alcoólica/etiologia , Cardiomiopatia Alcoólica/patologia , Catalase/metabolismo , Modelos Animais de Doenças , Etanol , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Regulação para Cima
8.
Life Sci ; 244: 117153, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830479

RESUMO

AIMS: Increased activity of calpain-1 and matrix metalloproteinase (MMP)-2 was observed in different models of arterial hypertension and contribute to thicken the left ventricle (LV) walls and to hypertrophy cardiac myocytes. MMP-2 activity may be regulated by calpain-1 via bioactive molecules activation such as transforming growth factor (TGF)-ß in cardiovascular diseases. This study analyzed whether calpain-1 causes cardiac hypertrophy and dysfunction by modulating the expression and activity of MMP-2 in renovascular hypertension. MAIN METHODS: Male Wistar rats were submitted to two kidneys, one clip (2K1C) model of hypertension or sham surgery and were treated with verapamil (VRP, 8 mg/kg/bid) by gavage from the second to tenth week post-surgery. Systolic blood pressure (SBP) was weekly assessed by tail-cuff plethysmography and morphological and functional parameters of LV were analyzed by echocardiography. MMP-2 activity was analyzed by in situ and gelatin zymography, while calpain-1 activity by caseinolytic assay. MMP-2, calpain-1, TGF-ß and MMP-14/TIMP-2 levels were identified in the LV by western blots. Fluorescence assays were performed to evaluate oxidative stress, MMP-2 and calpain-1 levels. KEY FINDINGS: SBP increased in 2K1C rats and was unaltered by VRP. However, VRP notably ameliorated hypertension-induced increase in LV thickness. VRP decreased hypertension-induced enhances in calpain-1 and MMP-2 activities, oxidative stress and mature TGF-ß levels. Treatment with VRP also decreased the accentuated MMP-14/TIMP-2 levels in 2K1C. SIGNIFICANCE: Treatment with VRP decreases calpain-1 and MMP-2 activities and also reduces TGF-ß and MMP-14/TIMP-2 levels in the LV of hypertensive rats, thus contributing to ameliorate cardiac hypertrophy.


Assuntos
Calpaína/metabolismo , Cardiomegalia/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/complicações , Metaloproteinase 2 da Matriz/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Verapamil/farmacologia , Animais , Calpaína/genética , Cardiomegalia/etiologia , Masculino , Metaloproteinase 2 da Matriz/genética , Ratos , Ratos Wistar , Vasodilatadores/farmacologia
9.
Free Radic Biol Med ; 130: 234-243, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30399409

RESUMO

Hypertension is associated with cardiovascular remodeling. Given that impaired redox state activates matrix metalloproteinase (MMP)- 2 and promotes vascular remodeling, we hypothesized that nitrite treatment at a non-antihypertensive dose exerts antioxidant effects and attenuates both MMP-2 activation and vascular remodeling of hypertension. We examined the effects of oral sodium nitrite at antihypertensive (15 mg/kg) or non-antihypertensive (1 mg/kg) daily dose in hypertensive rats (two kidney, one clip; 2K1C model). Sham-operated and 2K1C hypertensive rats received vehicle or nitrite by gavage for four weeks. Systolic blood pressure decreased only in hypertensive rats treated with nitrite 15 mg/Kg/day. Both low and high nitrite doses decreased 2K1C-induced vascular remodeling assessed by measuring aortic cross-sectional area, media/lumen ratio, and number of vascular smooth muscle cells/aortic length. Both low and high nitrite doses decreased 2K1C-induced vascular oxidative stress assessed in situ with the fluorescent dye DHE and with the lucigenin chemiluminescence assay. Vascular MMP-2 expression and activity were assessed by gel zymography, Western blot, and in situ zymography increased with hypertension. While MMP-2 levels did not change in response to both doses of nitrite, both doses completely prevented hypertension-induced increases in vascular MMP activity. Moreover, incubation of aortas from hypertensive rats with nitrite at 1-20 µmol/L reduced gelatinolytic activity by 20-30%. This effect was fully inhibited by the xanthine oxidase (XOR) inhibitor febuxostat, suggesting XOR-mediated generation of nitric oxide (NO) from nitrite as a mechanism explaining the responses to nitrite. In vitro incubation of aortic extracts with nitrite 20 µmol/L did not affect MMP-2 activity. These results show that nitrite reverses the vascular structural alterations of hypertension, independently of anti-hypertensive effects. This response is mediated, at least in part, by XOR and is attributable to antioxidant effects of nitrite blunting vascular MMP-2 activation. Our findings suggest nitrite therapy to reverse structural alterations of hypertension.


Assuntos
Hipertensão Renovascular/tratamento farmacológico , Metaloproteinase 2 da Matriz/genética , Nitritos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Antioxidantes , Aorta/efeitos dos fármacos , Aorta/patologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Febuxostat/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão Renovascular/genética , Hipertensão Renovascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Espécies Reativas de Oxigênio , Remodelação Vascular/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/genética
10.
Vascul Pharmacol ; 116: 36-44, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339939

RESUMO

Hypertension is characterized by maladaptive vascular remodeling and enhanced oxidative stress in the vascular wall. Peroxynitrite may directly activate latent matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMC) by its S-glutathiolation. MMP-2 may then proteolyze calponin-1 in aortas from hypertensive animals, which stimulates VSMC proliferation and medial hypertrophy. Calponin-1 is an intracellular protein which helps to maintain VSMC in their differentiated (contractile) phenotype. The present study therefore investigated whether aortic MMP-2 activity is increased by oxidative stress in early hypertension and then contributes to hypertrophic arterial remodeling by reducing the levels of calponin-1. Male Wistar rats were submitted to the two kidney, one clip (2 K-1C) model of hypertension or sham surgery and were treated daily with tempol (18 mg/kg/day) or its vehicle (water) by gavage from the third to seventh day post-surgery. Systolic blood pressure (SBP) was daily assessed by tail-cuff plethysmography. After one week, aortas were removed to perform morphological analysis with hematoxylin and eosin staining and to analyze reactive oxygen­nitrogen species levels by dihydroethidium and immunohistochemistry for nitrotyrosine. MMP-2 activity was analyzed by in situ and gelatin zymography and its S-glutathiolation was analyzed by Western blot for MMP-2 of anti-glutathione immunoprecipitates. Calponin-1 levels were identified in aortas by immunofluorescence. SBP increased by approximately 50 mmHg at the first week in 2 K-1C rats which was unaffected by tempol. However, tempol ameliorated the hypertension-induced increase in arterial media-to-lumen ratio and hypertrophic remodeling. Tempol also decreased hypertension-induced aortic oxidative stress and the enhanced MMP-2 activity. S-glutathiolation may be a potential mechanism by which oxidative stress activates MMP-2 in aortas of 2 K-1C rats. Furthermore, calponin-1 was decreased in aortas from 2 K-1C rats and tempol prevented this. In conclusion, oxidative stress may contribute to the increase in aortic MMP-2 activity, possibly by S-glutathiolation, and this may result in calponin-1 loss and maladaptive vascular remodeling in early hypertension.


Assuntos
Aorta Torácica/enzimologia , Proteínas de Ligação ao Cálcio/metabolismo , Hipertensão Renovascular/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Proteínas dos Microfilamentos/metabolismo , Estresse Oxidativo , Remodelação Vascular , Animais , Aorta Torácica/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Ativação Enzimática , Glutationa/metabolismo , Humanos , Hipertensão Renovascular/patologia , Hipertrofia , Masculino , Ratos Wistar , Transdução de Sinais , Fatores de Tempo , Calponinas
12.
J Am Soc Hypertens ; 12(7): 561-573, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29680225

RESUMO

We evaluated the possible mechanisms underlying the oxidative stress induced by ethanol withdrawal. With this purpose, we verified the role of AT1 receptors in such response. Male Wistar rats were treated with ethanol 3%-9% (vol./vol.) for 21 days. Ethanol withdrawal was induced by abrupt discontinuation of the treatment. Experiments were performed 48 hours after ethanol discontinuation. Increased plasma levels of angiotensin II were detected after ethanol withdrawal. Losartan (10 mg/kg; p.o. gavage), a selective AT1 receptor antagonist, impeded the increase in blood pressure induced by ethanol withdrawal. Increased lipoperoxidation and superoxide anion (O2-) levels were detected in aortas after ethanol withdrawal, and losartan prevented these responses. Decreased hydrogen peroxide and nitrate/nitrite concentration were detected in aortas after ethanol withdrawal, and losartan prevented these effects. Nitrotyrosine immunostaining in the rat aorta was increased after ethanol withdrawal, and AT1 blockade impeded this response. Increased expression of PKCδ and p47phox was detected after ethanol withdrawal, and treatment with losartan prevented these responses. Our study provides novel evidence that ethanol withdrawal increases vascular oxidative stress and blood pressure through AT1-dependent mechanisms. These findings highlight the importance of angiotensin II in ethanol withdrawal-induced increase in blood pressure and vascular oxidative damage.

13.
Free Radic Biol Med ; 120: 25-32, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29530793

RESUMO

Cardiac hypertrophy is a common consequence of chronic hypertension and leads to heart failure and premature death. The anion nitrite is now considered as a bioactive molecule able to exert beneficial cardiovascular effects. Previous results showed that nitrite attenuates hypertension-induced increases in reactive oxygen species (ROS) production in the vasculature. Whether antioxidant effects induced by nitrite block critical signaling pathways involved in cardiac hypertrophy induced by hypertension has not been determined yet. The Akt/mTOR signaling pathway is responsible to activate protein synthesis during cardiac remodeling and is activated by increased ROS production, which is commonly found in hypertension. Here, we investigated the effects of nitrite treatment on cardiac remodeling and activation of this hypertrophic signaling pathway in 2 kidney-1 clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral nitrite at 1 or 15 mg/kg for four weeks. Nitrite treatment (15 mg/kg) reduced systolic blood pressure and decreased ROS production in the heart tissue from hypertensive rats. This nitrite dose also blunted hypertension-induced activation of mTOR pathway and cardiac hypertrophy. While the lower nitrite dose (1 mg/kg) did not affect blood pressure, it exerted antioxidant effects and tended to attenuate mTOR pathway activation and cardiac hypertrophy induced by hypertension. Our findings provide strong evidence that nitrite treatment decreases cardiac remodeling induced by hypertension as a result of its antioxidant effects and downregulation of mTOR signaling pathway. This study may help to establish nitrite as an effective therapy in hypertension-induced cardiac hypertrophic remodeling.


Assuntos
Antioxidantes/farmacologia , Cardiomegalia/metabolismo , Hipertensão/metabolismo , Nitritos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Cardiomegalia/etiologia , Hipertensão/complicações , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos
14.
Atherosclerosis ; 270: 146-153, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425960

RESUMO

BACKGROUND AND AIMS: Increased activity of matrix metalloproteinase (MMP)-2 is observed in aortas of different models of hypertension, and its activation is directly mediated by oxidative stress. As quercetin is an important flavonoid with significant antioxidant effects, the hypothesis here is that quercetin will reduce increased MMP-2 activity by decreasing oxidative stress in aortas of hypertensive rats and then ameliorate hypertension-induced vascular remodeling. METHODS: Male two-kidney one-clip (2K1C) hypertensive Wistar rats and controls were treated with quercetin (10 mg/kg/day) or its vehicle for three weeks by gavage. Rats were then analyzed at five weeks of hypertension. Systolic blood pressure (SBP) was determined by tail-cuff plethysmography. Aortas were used to determine MMP activity by in situ zymography and reactive oxygen species (ROS) levels by dihydroethidium. Western blot was performed to detect focal adhesion kinase (FAK) and phosphorylated-FAK levels. RESULTS: SBP was increased in 2K1C rats and only a borderline reduction in SBP was observed after treating 2K1C rats with quercetin. Cross-sectional area and the number of vascular smooth muscle cells were significantly increased in aortas of hypertensive rats, and quercetin reduced them. Quercetin reduced ROS levels in aortas of 2K1C rats and the increased activity of gelatinases in situ. However, quercetin did not affect the levels of tissue inhibitor of MMP (TIMP)-2 and did not interfere with FAK and p-FAK levels in aortas of hypertensive rats. Furthermore, different concentrations of quercetin did not directly reduce the activity of human recombinant MMP-2 in vitro. CONCLUSIONS: Quercetin reduces hypertension-induced vascular remodeling, oxidative stress and MMP-2 activity in aortas.


Assuntos
Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Hipertensão Renovascular/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Aorta/enzimologia , Aorta/patologia , Aorta/fisiopatologia , Modelos Animais de Doenças , Quinase 1 de Adesão Focal/metabolismo , Hipertensão Renovascular/enzimologia , Hipertensão Renovascular/patologia , Hipertensão Renovascular/fisiopatologia , Masculino , Fosforilação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Am J Cardiovasc Dis ; 7(2): 64-71, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533932

RESUMO

Physical inactivity and dyslipidemia are considered risk factors for cardiovascular diseases. There are few studies evaluating the effects of physical exercise in small-caliber artery in a model that mimics familial hypercholesterolemia. The aim of this study was to examine the effect of exercise training, at moderate intensity, on metabolic parameters and iliac artery responsiveness in LDL-/- mice. Sedentary (SD) and trained (TR) mice performed AET (5 days/week, 60 minutes/day at 60-70% of maximum speed) during 8 weeks. Body weight gain (BWG), epididymal fat, blood glucose, total cholesterol and triglycerides were evaluated. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside, phenylephrine and U46619 were obtained in isolated iliac artery. The production of nitric oxide (NO) and reactive oxygen species as well as the expression and activity of MMP-2 were assessed. AET was effective in preventing BWG and epididymal fat gain, whereas no changes were observed in glucose, total cholesterol and triglycerides levels. Improvement in responsiveness to ACh was found in TR (Emax = 85±3%) compared with SD group (Emax = 62±5%) without changes in the maximal vascular response or potency to SNP, PHE and U46619. The NO level was increased (10.8-fold) while ROS formation was decreased (3.7-fold) in iliac artery from TR, without changes in MMP-2 activity or its expression. AET was effective to improve endothelium-dependent relaxation that was accompanied by increased NO production and decreased ROS formation in iliac artery. The intensity of AET should be greater to modify metabolic disorders in this experimental model of dyslipidemia.

16.
Basic Clin Pharmacol Toxicol ; 121(4): 246-256, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28374979

RESUMO

Matrix metalloproteinase (MMP)-2 participates in hypertension-induced maladaptive vascular remodelling by degrading extra- and intracellular proteins. The consequent extracellular matrix rearrangement and phenotype switch of vascular smooth muscle cells (VSMCs) lead to increased cellular migration and proliferation. As calponin-1 degradation by MMP-2 may lead to VSMC proliferation during hypertension, the hypothesis of this study is that increased MMP-2 activity contributes to early hypertension-induced maladaptive remodelling in conductance and resistance arteries via regulation of calponin-1. The main objective was to analyse whether MMP-2 exerts similar effects on the structure and function of the resistance and conductance arteries during early hypertension. Two-kidney, one-clip (2K-1C) hypertensive male rats and corresponding controls were treated with doxycycline (30 mg/kg/day) or water until reaching one week of hypertension. Systolic blood pressure was increased in 2K-1C rats, and doxycycline did not reduce it. Aortas and mesenteric arteries were analysed. MMP-2 activity and expression were increased in both arteries, and doxycycline reduced it. Significant hypertrophic remodelling and VSMC proliferation were observed in aortas but not in mesenteric arteries of 2K-1C rats. The contractility of mesenteric arteries to phenylephrine was increased in 2K-1C rats, and doxycycline prevented this alteration. The potency of phenylephrine to contract aortas of 2K-1C rats was increased, and doxycycline decreased it. Whereas calponin-1 expression was increased in 2K-1C mesenteric arteries, calponin-1 was reduced in aortas. Doxycycline treatment reverted changes in calponin-1 expression. MMP-2 contributes to hypertrophic remodelling in aortas by decreasing calponin-1 levels, which may result in VSMC proliferation. On the other hand, MMP-2-dependent increased calponin-1 in mesenteric arteries may contribute to vascular hypercontractility in 2K-1C rats. Divergent regulation of calponin-1 by MMP-2 may be an important mechanism that leads to maladaptive vascular effects in hypertension.


Assuntos
Aorta Torácica/enzimologia , Proteínas de Ligação ao Cálcio/metabolismo , Hipertensão Renovascular/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Artérias Mesentéricas/enzimologia , Proteínas dos Microfilamentos/metabolismo , Remodelação Vascular , Resistência Vascular , Vasoconstrição , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipertensão Renovascular/patologia , Hipertensão Renovascular/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/patologia , Artérias Mesentéricas/fisiopatologia , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Ratos Wistar , Transdução de Sinais , Remodelação Vascular/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Calponinas
17.
Expert Opin Ther Targets ; 21(5): 543-556, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28338370

RESUMO

INTRODUCTION: Hypertension is a leading cause of morbidity and mortality worldwide. A major pathophysiological factor contributing to hypertension is reduced nitric oxide (NO) bioavailability. Strategies to address this pathophysiological mechanism could offer significant advantages. Areas covered: In this review we aimed at examining a variety of drugs (statins, beta-adrenergic receptor blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin II type-1 receptor blockers) used to treat hypertension and other cardiovascular diseases, particularly with respect to their potential of increasing NO bioavailability and activity in the cardiovascular system. There is now evidence supporting the notion that many cardiovascular drugs activate NO signaling or enhance NO bioavailability as a contributing mechanism to their beneficial cardiovascular effects. Moreover, other drugs may attenuate NO inactivation by superoxide and other reactive oxygen species by exerting antioxidant effects. More recently, the NO oxidation products nitrite and nitrate have been acknowledged as sources of NO after recycling back to NO. Activation of the nitrate-nitrite-NO pathway is an alternate pathway that may generate NO from both anions and exert antihypertensive effects. Expert opinion: In this review, we provide an overview of the possible mechanisms by which these drugs enhance NO bioavailability and help in the therapy of hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Óxido Nítrico/metabolismo , Animais , Antioxidantes/farmacologia , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Hipertensão/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo
18.
Biochem Pharmacol ; 118: 50-58, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27531060

RESUMO

Increased matrix metalloproteinase (MMP)-2 is implicated in the vascular remodeling of hypertension. Calponin-1 is a contractile protein, and its absence is associated with vascular smooth muscle cell (VSMC) phenotype switch, which leads to migration and remodeling. We evaluated whether increased MMP-2 activity precedes chronic vascular remodeling by decreasing calponin-1 and inducing VSMC proliferation. Sham or two kidney-one clip (2K1C) rats were treated with doxycycline at 30mg/kg/day. Systolic blood pressure was increased in the 2K1C rats after 1 and 2weeks post-surgery, and doxycycline was effective to reduce it only at 2weeks of hypertension (p<0.05). Increased activity of MMP-2 was observed in aortas from 2K1C at 1 and 2weeks of hypertension, followed by increased VSMC proliferation, and those effects were abolished by treating 2K1C rats with doxycycline (p<0.05). Increased aortic media to lumen ratio started to emerge in 2K1C rats at 1week of hypertension, and it was established by 2weeks. MMP-2 and calponin-1 co-localized in the cytosol of VSMC. Aortas from 2K1C rats showed a significant reduction in calponin-1 levels at 1week of hypertension, and doxycycline prevented its loss (p<0.05). However, at 2weeks of hypertension, calponin-1 was upregulated in 2K1C (p<0.05 vs. Sham groups). The mRNA levels of calponin-1 were not altered in the aortas of 2K1C at 1week of hypertension. MMP-2 may contribute to the post-translational decrease in calponin-1, thus culminating in hypertension-induced maladaptive arterial remodeling.


Assuntos
Artérias/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Endotélio Vascular/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas dos Microfilamentos/metabolismo , Músculo Liso Vascular/metabolismo , Pré-Hipertensão/metabolismo , Remodelação Vascular , Animais , Aorta , Artérias/enzimologia , Artérias/patologia , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Citosol/enzimologia , Citosol/metabolismo , Citosol/patologia , Progressão da Doença , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Masculino , Proteínas dos Microfilamentos/genética , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Proteínas Nucleares/metabolismo , Pré-Hipertensão/patologia , Pré-Hipertensão/fisiopatologia , Proteólise , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Wistar , Transativadores/metabolismo , Calponinas
20.
PLoS One ; 9(4): e92287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743169

RESUMO

Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory.


Assuntos
Aorta/efeitos dos fármacos , Aorta/patologia , Matriz Extracelular/efeitos dos fármacos , Hipertensão/patologia , Oxigênio/farmacologia , Remodelação Vascular/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Aorta/inervação , Pressão Sanguínea/efeitos dos fármacos , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Elastina/metabolismo , Matriz Extracelular/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Risco , Superóxidos/metabolismo , Fatores de Tempo , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA