RESUMO
Scanning electron microscopy (SEM) offers an unparalleled view of the membrane topography of mammalian cells by using a conventional osmium (OsO4) and ethanol-based tissue preparation. However, conventional SEM methods limit optimal resolution due to ethanol and lipid interactions and interfere with visualization of fluorescent reporter proteins. Therefore, SEM correlative light and electron microscopy (CLEM) has been hindered by the adverse effects of ethanol and OsO4 on retention of fluorescence signals. To overcome this technological gap in achieving high-resolution SEM and retain fluorescent reporter signals, we developed a freeze-drying method with gaseous nitrogen (FDGN). We demonstrate that FDGN preserves cyto-architecture to allow visualization of detailed membrane topography while retaining fluorescent signals and that FDGN processing can be used in conjunction with a variety of high-resolution imaging systems to enable collection and validation of unique, high-quality data from these approaches. In particular, we show that FDGN coupled with high resolution microscopy provided detailed insight into viral or tumor-derived extracellular vesicle (TEV)-host cell interactions and may aid in designing new approaches to intervene during viral infection or to harness TEVs as therapeutic agents.
RESUMO
Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.
Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Colorretais/terapia , Imunogenicidade da Vacina/imunologia , Instabilidade de Microssatélites , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Feminino , Mutação da Fase de Leitura , Humanos , Camundongos , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/imunologiaRESUMO
Recent advances in next generation sequencing expanded the availability of tumor mutanome data that list the mutations present in cancer cells. Mutated proteins are an interesting source of neoantigens that can be used to specifically target tumor cells in the context of immunotherapy. However, identifying new antigenic peptides from mutated proteins remains challenging. In this chapter, we present Reverse Immunology as an approach to identify potential antigens from any given polypeptide sequence. First, we explain the rationale behind the identification of candidate HLA-binding peptides through mass spectrometry or in silico approaches. Then, we describe the isolation of low-frequency T-cell precursors specific for the candidate peptides using peptide-HLA multimers. Finally, we discuss validation steps leading to the identification of a T-cell clone recognizing tumor cells that endogenously process the candidate peptide. We also present approaches to study the impact of the proteasome complex on candidate peptide processing.
Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos HLA/imunologia , Técnicas Imunológicas/métodos , Imunoterapia , Neoplasias/terapia , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Simulação por Computador , Humanos , Espectrometria de Massas , Peptídeos/química , Peptídeos/imunologia , Análise de Sequência de ProteínaRESUMO
Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.
Assuntos
Adenoviridae/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Vacinas Virais/uso terapêutico , Adenoviridae/genética , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
In the version of Supplementary Fig. 5a originally published with this Letter, the authors mistakenly duplicated images of LAMP1 staining in place of CD63 staining; this has now been amended to the correct version shown below.
RESUMO
Hepatitis C virus (HCV) is a peculiar member of the Flaviviridae family, with features in between an enveloped virus and a human lipoprotein and, consequently, unusual biophysical properties that made its production and purification rather challenging.Here we describe methods to generate HCV stocks in cell culture by electroporating in vitro transcribed viral RNA into permissive cell lines as well as downstream concentration and purification strategies.
Assuntos
Técnicas de Cultura de Células/métodos , Eletroporação/métodos , Hepacivirus/isolamento & purificação , Hepacivirus/fisiologia , Hepatite C/virologia , RNA Viral/genética , Transfecção/métodos , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Desenho de Equipamento , Regulação Viral da Expressão Gênica , Genoma Viral , Hepacivirus/genética , Humanos , Transcrição Gênica , Ultrafiltração/instrumentação , Ultrafiltração/métodos , Replicação ViralRESUMO
Interferons (IFNs) mediate cellular defence against viral pathogens by upregulation of IFN-stimulated genes whose products interact with viral components or alter cellular physiology to suppress viral replication1-3. Among the IFN-stimulated genes that can inhibit influenza A virus (IAV)4 are the myxovirus resistance 1 GTPase5 and IFN-induced transmembrane protein 3 (refs 6,7). Here, we use ectopic expression and gene knockout to demonstrate that the IFN-inducible 219-amino acid short isoform of human nuclear receptor coactivator 7 (NCOA7) is an inhibitor of IAV as well as other viruses that enter the cell by endocytosis, including hepatitis C virus. NCOA7 interacts with the vacuolar H+-ATPase (V-ATPase) and its expression promotes cytoplasmic vesicle acidification, lysosomal protease activity and the degradation of endocytosed antigen. Step-wise dissection of the IAV entry pathway demonstrates that NCOA7 inhibits fusion of the viral and endosomal membranes and subsequent nuclear translocation of viral ribonucleoproteins. Therefore, NCOA7 provides a mechanism for immune regulation of endolysosomal physiology that not only suppresses viral entry into the cytosol from this compartment but may also regulate other V-ATPase-associated cellular processes, such as physiological adjustments to nutritional status, or the maturation and function of antigen-presenting cells.
Assuntos
Endossomos/efeitos dos fármacos , Interferons/metabolismo , Coativadores de Receptor Nuclear/antagonistas & inibidores , Coativadores de Receptor Nuclear/metabolismo , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/fisiologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/imunologia , Isoformas de Proteínas , Proteólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , ATPases Vacuolares Próton-TranslocadorasRESUMO
Hepatitis C virus (HCV) is a unique enveloped virus that assembles as a hybrid lipoviral particle by tightly interacting with host lipoproteins. As a result, HCV virions display a characteristic low buoyant density and a deceiving coat, with host-derived apolipoproteins masking viral epitopes. We previously described methods to produce high-titer preparations of HCV particles with tagged envelope glycoproteins that enabled ultrastructural analysis of affinity-purified virions. Here, we performed proteomics studies of HCV isolated from culture media of infected hepatoma cells to define viral and host-encoded proteins associated with mature virions. Using two different affinity purification protocols, we detected four viral and 46 human cellular proteins specifically copurifying with extracellular HCV virions. We determined the C terminus of the mature capsid protein and reproducibly detected low levels of the viral nonstructural protein, NS3. Functional characterization of virion-associated host factors by RNAi identified cellular proteins with either proviral or antiviral roles. In particular, we discovered a novel interaction between HCV capsid protein and the nucleoporin Nup98 at cytosolic lipid droplets that is important for HCV propagation. These results provide the first comprehensive view to our knowledge of the protein composition of HCV and new insights into the complex virus-host interactions underlying HCV infection.
Assuntos
Hepacivirus/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteômica , Proteínas Virais/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Hepacivirus/metabolismo , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Morfogênese , Proteínas Virais/químicaRESUMO
Hepatitis C virus (HCV) represents a global health concern affecting over 185 million people worldwide. Chronic HCV infection causes liver fibrosis and cirrhosis and is the leading indication for liver transplantation. Recent advances in the field of direct-acting antiviral drugs (DAAs) promise a cure for HCV in over 90% of cases that will get access to these expensive treatments. Nevertheless, the lack of a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. With chimpanzees being for a long time the only non-human in vivo model of HCV infection, strong efforts were put into establishing in vitro experimental systems. The initial models only enabled to study specific aspects of the HCV life cycle, such as viral replication with the subgenomic replicon and entry using HCV pseudotyped particles (HCVpp). Subsequent development of protocols to grow infectious HCV particles in cell-culture (HCVcc) ignited investigations on the full cycle of HCV infection and the virus-host interactions required for virus propagation. More recently, small animal models permissive to HCV were generated that allowed in vivo testing of novel antiviral therapies as well as vaccine candidates. This review provides an overview of the currently available in vitro and in vivo experimental systems to study HCV biology. Particular emphasis is given to how these model systems furthered our understanding of virus-host interactions, viral pathogenesis and immunological responses to HCV infection, as well as drug and vaccine development.
Assuntos
Modelos Animais de Doenças , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Animais , Linhagem Celular , Hepacivirus/patogenicidade , Humanos , Pan troglodytesRESUMO
Hepatitis C virus (HCV) uniquely requires the liver-specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (AGO) during HCV infection showed robust AGO binding on the HCV 5'UTR at known and predicted miR-122 sites. On the human transcriptome, we observed reduced AGO binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 "sponge" effect was relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and site number. We describe a quantitative mathematical model of HCV-induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV.
Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Proteínas Argonautas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Hepacivirus/genética , Humanos , Fígado/metabolismo , Fígado/virologia , Dados de Sequência Molecular , RNA Viral/química , Replicação ViralRESUMO
UNLABELLED: Hepatitis C virus (HCV) particles associate with lipoproteins and infect cells by using at least four cell entry factors. These factors include scavenger receptor class B type I (SR-BI), CD81, claudin 1 (CLDN1), and occludin (OCLN). Little is known about specific functions of individual host factors during HCV cell entry and viral domains that mediate interactions with these factors. Hypervariable region 1 (HVR1) within viral envelope protein 2 (E2) is involved in the usage of SR-BI and conceals the viral CD81 binding site. Moreover, deletion of this domain alters the density of virions. We compared lipoprotein interaction, surface attachment, receptor usage, and cell entry between wild-type HCV and a viral mutant lacking this domain. Deletion of HVR1 did not affect CD81, CLDN1, and OCLN usage. However, unlike wild-type HCV, HVR1-deleted viruses were not neutralized by antibodies and small molecules targeting SR-BI. Nevertheless, modulation of SR-BI cell surface expression altered the infection efficiencies of both viruses to similar levels. Analysis of affinity-purified virions revealed comparable levels of apolipoprotein E (ApoE) incorporation into viruses with or without HVR1. However, ApoE incorporated into these viruses was differentially recognized by ApoE-specific antibodies. Thus, SR-BI has at least two functions during cell entry. One of them can be neutralized by SR-BI-targeting molecules, and it is critical only for wild-type HCV. The other one is important for both viruses but apparently is not inactivated by the SR-BI binding antibodies and small molecules evaluated here. In addition, HVR1 modulates the conformation and/or epitope exposure of virus particle-associated ApoE. IMPORTANCE: HCV cell entry is SR-BI dependent irrespective of the presence or absence of HVR1. Moreover, this domain modulates the properties of ApoE on the surface of virus particles. These findings have implications for the development of SR-BI-targeting antivirals. Furthermore, these findings highlight separable functions of SR-BI during HCV cell entry and reveal a novel role of HVR1 for the properties of virus-associated lipoproteins.
Assuntos
Claudina-1/metabolismo , Hepacivirus/fisiologia , Ocludina/metabolismo , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Linhagem Celular , Deleção de Genes , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Lipoproteínas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Virais/genéticaRESUMO
UNLABELLED: Hepatitis C virus (HCV)-induced endstage liver disease is currently a major indication for liver transplantation. After transplantation the donor liver inevitably becomes infected with the circulating virus. Monoclonal antibodies (mAbs) against the HCV coreceptor scavenger receptor class B type I (SR-BI) inhibit HCV infection of different genotypes, both in cell culture and in humanized mice. Anti-SR-BI mAb therapy is successful even when initiated several days after HCV exposure, supporting its potential applicability to prevent HCV reinfection of liver allografts. However, HCV variants with reduced SR-BI dependency have been described in the literature, which could potentially limit the use of SR-BI targeting therapy. In this study we show, both in a preventative and postexposure setting, that humanized mice infected with HCV variants exhibiting increased in vitro resistance to SR-BI-targeting molecules remain responsive to anti-SR-BI mAb therapy in vivo. A 2-week antibody therapy readily cleared HCV RNA from the circulation of infected humanized mice. We found no evidence supporting increased SR-BI-receptor dependency of viral particles isolated from humanized mice compared to cell culture-produced virus. However, we observed that, unlike wild-type virus, the in vitro infectivity of the resistant variants was inhibited by both human high density lipoprotein (HDL) and very low density lipoprotein (VLDL). The combination of mAb1671 with these lipoproteins further increased the antiviral effect. CONCLUSION: HCV variants that are less dependent on SR-BI in vitro can still be efficiently blocked by an anti-SR-BI mAb in humanized mice. Since these variants are also more susceptible to neutralization by anti-HCV envelope antibodies, their chance of emerging during anti-SR-BI therapy is severely reduced. Our data indicate that anti-SR-BI receptor therapy could be an effective way to prevent HCV infection in a liver transplant setting.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Hepatite C/tratamento farmacológico , Receptores Depuradores Classe B/imunologia , Animais , Linhagem Celular Tumoral , Hepacivirus/efeitos dos fármacos , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Lipoproteínas/farmacologia , Lipoproteínas/uso terapêutico , Camundongos SCID , Resultado do Tratamento , Ácidos Tri-IodobenzoicosRESUMO
More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.
Assuntos
Modelos Animais de Doenças , Engenharia Genética , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Replicação Viral , Animais , Linhagem Celular , Ciclofilina A/genética , Ciclofilina A/metabolismo , Hepacivirus/imunologia , Hepatite C/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ocludina/genética , Ocludina/metabolismo , Fator de Transcrição STAT1/deficiência , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Viremia/virologia , Vírion/crescimento & desenvolvimento , Vírion/fisiologiaRESUMO
Hepatitis C virus (HCV) is believed to initially infect the liver through the basolateral side of hepatocytes, where it engages attachment factors and the coreceptors CD81 and scavenger receptor class B type I (SR-BI). Active transport toward the apical side brings the virus in close proximity of additional entry factors, the tight junction molecules claudin-1 and occludin. HCV is also thought to propagate via cell-to-cell spread, which allows highly efficient virion delivery to neighboring cells. In this study, we compared an adapted HCV genome, clone 2, characterized by superior cell-to cell spread, to its parental genome, J6/JFH-1, with the goal of elucidating the molecular mechanisms of HCV cell-to-cell transmission. We show that CD81 levels on the donor cells influence the efficiency of cell-to-cell spread and CD81 transfer between neighboring cells correlates with the capacity of target cells to become infected. Spread of J6/JFH-1 was blocked by anti-SR-BI antibody or in cells knocked down for SR-BI, suggesting a direct role for this receptor in HCV cell-to-cell transmission. In contrast, clone 2 displayed a significantly reduced dependence on SR-BI for lateral spread. Mutations in E1 and E2 responsible for the enhanced cell-to-cell spread phenotype of clone 2 rendered cell-free virus more susceptible to antibody-mediated neutralization. Our results indicate that although HCV can lose SR-BI dependence for cell-to-cell spread, vulnerability to neutralizing antibodies may limit this evolutionary option in vivo. Combination therapies targeting both the HCV glycoproteins and SR-BI may therefore hold promise for effective control of HCV dissemination.
Assuntos
Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Receptores Depuradores Classe B/metabolismo , Internalização do Vírus , Técnicas de Silenciamento de Genes , Humanos , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Depuradores Classe B/antagonistas & inibidores , Receptores Depuradores Classe B/genética , Tetraspanina 28/metabolismoRESUMO
Hepatitis C virus (HCV) is a major cause of chronic liver disease, with an estimated 170 million people infected worldwide. Low yields, poor stability, and inefficient binding to conventional EM grids have posed significant challenges to the purification and structural analysis of HCV. In this report, we generated an infectious HCV genome with an affinity tag fused to the E2 envelope glycoprotein. Using affinity grids, previously described to isolate proteins and macromolecular complexes for single-particle EM, we were able to purify enveloped particles directly from cell culture media. This approach allowed for rapid in situ purification of virions and increased particle density that were instrumental for cryo-EM and cryoelectron tomography (cryo-ET). Moreover, it enabled ultrastructural analysis of virions produced by primary human hepatocytes. HCV appears to be the most structurally irregular member of the Flaviviridae family. Particles are spherical, with spike-like projections, and heterogeneous in size ranging from 40 to 100 nm in diameter. Exosomes, although isolated from unfractionated culture media, were absent in highly infectious, purified virus preparations. Cryo-ET studies provided low-resolution 3D structural information of highly infectious virions. In addition to apolipoprotein (apo)E, HCV particles also incorporate apoB and apoA-I. In general, host apolipoproteins were more readily accessible to antibody labeling than HCV glycoproteins, suggesting either lower abundance or masking by host proteins.
Assuntos
Hepacivirus/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Vírion/ultraestrutura , Apolipoproteínas/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica , Hepatócitos/virologia , Humanos , Imuno-Histoquímica , Marcação por Isótopo , Especificidade da Espécie , Proteínas do Envelope Viral/genética , Vírion/isolamento & purificaçãoRESUMO
UNLABELLED: Endstage liver disease caused by chronic hepatitis C virus (HCV) infection is the leading indication for liver transplantation in the Western world. However, immediate reinfection of the grafted donor liver by circulating virus is inevitable and liver disease progresses much faster than the original disease. Standard antiviral therapy is not well tolerated and usually ineffective in liver transplant patients, whereas anti-HCV immunotherapy is hampered by the extreme genetic diversity of the virus and its ability to spread by way of cell-cell contacts. We generated a human monoclonal antibody against scavenger receptor class B type I (SR-BI), monoclonal antibody (mAb)16-71, which can efficiently prevent infection of Huh-7.5 hepatoma cells and primary hepatocytes by cell-culture-derived HCV (HCVcc). Using an Huh7.5 coculture system we demonstrated that mAb16-71 interferes with direct cell-to-cell transmission of HCV. Finally we evaluated the in vivo efficacy of mAb16-71 in "human liver urokinase-type plasminogen activator, severe combined immune deficiency (uPA-SCID) mice" (chimeric mice). A 2-week anti-SR-BI therapy that was initiated 1 day before viral inoculation completely protected all chimeric mice from infection with serum-derived HCV of different genotypes. Moreover, a 9-day postexposure therapy that was initiated 3 days after viral inoculation (when viremia was already observed in the animals) suppressed the rapid viral spread observed in untreated control animals. After cessation of anti-SR-BI-specific antibody therapy, a rise of the viral load was observed. CONCLUSION: Using in vitro cell culture and human liver-chimeric mouse models, we show that a human mAb targeting the HCV coreceptor SR-BI completely prevents infection and intrahepatic spread of multiple HCV genotypes. This strategy may be an efficacious way to prevent infection of allografts following liver transplantation in chronic HCV patients, and may even hold promise for the prevention of virus rebound during or following antiviral therapy.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos CD36/imunologia , Hepatite C/prevenção & controle , Animais , Linhagem Celular Tumoral , Quimera , Genótipo , Humanos , Transplante de Fígado , Camundongos , Camundongos SCID , Prevenção SecundáriaRESUMO
UNLABELLED: Here we demonstrate that primary cultures of human fetal liver cells (HFLC) reliably support infection with laboratory strains of hepatitis C virus (HCV), although levels of virus replication vary significantly between different donor cell preparations and frequently decline in a manner suggestive of active viral clearance. To investigate possible contributions of the interferon (IFN) system to control HCV infection in HFLC, we exploited the well-characterized ability of paramyxovirus (PMV) V proteins to counteract both IFN induction and antiviral signaling. The V proteins of measles virus (MV) and parainfluenza virus 5 (PIV5) were introduced into HFLC using lentiviral vectors encoding a fluorescent reporter for visualization of HCV-infected cells. V protein-transduced HFLC supported enhanced (10 to 100-fold) levels of HCV infection relative to untransduced or control vector-transduced HFLC. Infection was assessed by measurement of virus-driven luciferase, by assays for infectious HCV and viral RNA, and by direct visualization of HCV-infected hepatocytes. Live cell imaging between 48 and 119 hours postinfection demonstrated little or no spread of infection in the absence of PMV V protein expression. In contrast, V protein-transduced HFLC showed numerous HCV infection events. V protein expression efficiently antagonized the HCV-inhibitory effects of added IFNs in HFLC. In addition, induction of the type III IFN, IL29, following acute HCV infection was inhibited in V protein-transduced cultures. CONCLUSION: These studies suggest that the cellular IFN response plays a significant role in limiting the spread of HCV infection in primary hepatocyte cultures. Strategies aimed at dampening this response may be key to further development of robust HCV culture systems, enabling studies of virus pathogenicity and the mechanisms by which HCV spreads in its natural host cell population.
Assuntos
Hepatócitos/virologia , Proteínas Virais/biossíntese , Hepacivirus/fisiologia , Hepatite C/etiologia , Hepatite C/virologia , Hepatócitos/metabolismo , Humanos , Interferons/biossíntese , Interleucinas/antagonistas & inibidores , Interleucinas/biossíntese , Lentivirus/genética , Fígado/embriologia , Cultura Primária de Células , Transdução Genética , Replicação Viral/efeitos dos fármacosRESUMO
Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.
Assuntos
Modelos Animais de Doenças , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Anticorpos Bloqueadores/imunologia , Antígenos CD/genética , Antígenos CD/metabolismo , Células Cultivadas , Claudina-1 , Genótipo , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatócitos/citologia , Humanos , Imunização Passiva , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28 , Transfecção , Tropismo ViralRESUMO
Hepatitis C virus (HCV), which infects 2-3% of the world population, is a causative agent of chronic hepatitis and the leading indication for liver transplantation. The ability to propagate HCV in cell culture (HCVcc) is a relatively recent breakthrough and a key tool in the quest for specific antiviral therapeutics. Monitoring HCV infection in culture generally involves bulk population assays, use of genetically modified viruses and/or terminal processing of potentially precious samples. Here we develop a cell-based fluorescent reporter system that allows sensitive distinction of individual HCV-infected cells in live or fixed samples. We demonstrate use of this technology for several previously intractable applications, including live-cell imaging of viral propagation and host response, as well as visualizing infection of primary hepatocyte cultures. Integration of this reporter with modern image-based analysis methods could open new doors for HCV research.
Assuntos
Genes Reporter/genética , Hepacivirus/genética , Hepacivirus/ultraestrutura , Aumento da Imagem/métodos , Microscopia de Fluorescência/métodos , Sistemas Computacionais , Coloração e RotulagemRESUMO
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.