Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772633

RESUMO

One of the main challenges in the deployment of visible light communication (VLC) in realistic application fields, such as intelligent transportation systems (ITSs), is represented by the presence of large background noise levels on top of the optical signal carrying the digital information. A versatile and effective digital filtering technique is, hence, crucial to face such an issue in an effective way. In this paper, we present an extensive experimental evaluation of a complete VLC system, embedding a software-defined-radio (SDR)-based digital signal processing (DSP) filter stage, which is tested either indoors, in the presence of strong artificial 100-Hz stray illumination, and outdoors, under direct sunlight. The system employs low-power automotive LED lamps, and it is tested for baud rates up to 1 Mbaud. We experimentally demonstrate that the use of the DSP technique improves 10× the performance of the VLC receiver over the original system without the filtering stage, reporting a very effective rejection of both 100-Hz and solar noise background. Indoors, the noise margin in the presence of strong 100-Hz noise is increased by up to 40 dB, whilst in the outdoor configuration, the system is capable of maintaining error-free communication in direct sunlight conditions, up to 7.5 m, improving the distance by a factor of 1.6 compared to the case without filtering. We believe that the proposed system is a very effective solution for the suppression of various types of noise effects in a large set of VLC applications.

2.
Opt Express ; 30(25): 44640-44656, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522885

RESUMO

The recent development of Quantum Cascade Lasers (QCLs) represents one of the biggest opportunities for the deployment of a new class of Free Space Optical (FSO) communication systems working in the mid-infrared (mid-IR) wavelength range. As compared to more common FSO systems exploiting the telecom range, the larger wavelength employed in mid-IR systems delivers exceptional benefits in case of adverse atmospheric conditions, as the reduced scattering rate strongly suppresses detrimental effects on the FSO link length given by the presence of rain, dust, fog, and haze. In this work, we use a novel FSO testbed operating at 4.7 µm, to provide a detailed experimental analysis of noise regimes that could occur in realistic FSO mid-IR systems based on QCLs. Our analysis reveals the existence of two distinct noise regions, corresponding to different realistic channel attenuation conditions, which are precisely controlled in our setup. To relate our results with real outdoor configurations, we combine experimental data with predictions of an atmospheric channel loss model, finding that error-free communication could be attained for effective distances up to 8 km in low visibility conditions of 1 km. Our analysis of noise regimes may have a key relevance for the development of novel, long-range FSO communication systems based on mid-IR QCL sources.

3.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433215

RESUMO

In this paper, we present very recent results regarding the latency characterization of a novel bidirectional visible light communication (VLC) system for vehicular applications, which could be relevant in intelligent transportation system (ITS) safety applications, such as the assisted and automated braking of cars and motorbikes in critical situations. The VLC system has been implemented using real motorbike head- and tail-lights with distances up to 27 m in a realistic outdoor scenario. We performed a detailed statistical analysis of the observed error distribution in the communication process, assessing the most probable statistical values of expected latency depending on the observed packet error rate (PER). A minimum attainable observed round-trip latency of 2.5 ms was measured. Using our dataset, we have also estimated the probability to receive correctly a message with a specific average latency for a target PER, and we compare it to the ultra-reliable low-latency (URLL) 5G communications service. In addition, a mobility model is implemented to compare the VLC and radio frequency (RF) technologies (IEEE802.11p, LTE, 5G) to support an automated braking systems for vehicles in urban platooning.

4.
Rev Sci Instrum ; 92(9): 094705, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598503

RESUMO

We describe a new, low-cost system designed to provide multi-sensor remote condition monitoring of modern scientific laboratories and to allow users to perform actions from remote locations in the case of detection of specified events. The system is battery operated and does not require the presence of a local area network or WiFi (which are typically not available in the case of, e.g., power losses), as it exploits the growing infrastructure of Internet of Things low-power wide area networks. In particular, our system exploits the new SigFox ultra-narrow-bandwidth infrastructure and provides a bidirectional link between the instrumentation and the remote user even in the case of power line outages, which are among the most critical situations that a scientific laboratory can withstand. The system can detect the occurrence of predefined events in very short times and autonomously react with a series of predefined actions, also allowing a remote user to timely perform additional actions on the system through a user-friendly smartphone application or via a browser interface. The system also embeds a novel power loss detection architecture, which detects power line failures in less than 2 ms. We provide a full characterization of the prototype, including reaction times, connection latencies, sensor sensitivity, and power consumption.

5.
Opt Express ; 24(11): 11865-75, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410109

RESUMO

Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.

6.
Appl Opt ; 53(16): 3388-92, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24922412

RESUMO

We describe a reliable, high-power, and narrow-linewidth laser source at 399 nm, which is useful for cooling and trapping of ytterbium atoms. A continuous-wave titanium-sapphire laser at 798 nm is frequency doubled using a lithium triborate crystal in an enhancement cavity. Up to 1.0 W of light at 399 nm has been obtained from 1.3 W of infrared light, with an efficiency of 80%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA