Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep ; 43(5): 114127, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38652660

RESUMO

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.

2.
Mol Ther ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605519

RESUMO

The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.

3.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38558973

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.

4.
mBio ; 15(4): e0262323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426749

RESUMO

Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen, herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-α/ß receptors (Ifnar1-/-Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions without affecting viral loads. We used RNAseq to define IFN-λ- and IFN-ß-induced transcriptional responses in primary mouse keratinocytes. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils or blocking CXCL9 protected against severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection and suggests potential applications for IFN-λ in treating viral skin infections.IMPORTANCEType III interferons (IFN-λ) have been shown to have antiviral and immunomodulatory effects at epithelial barriers such as the respiratory and gastrointestinal tracts, but their effects on the skin have not been extensively investigated. We used mice lacking IFN-λ signaling to investigate the skin-specific effects of IFN-λ against the herpes simplex virus (HSV), which targets epithelial tissues to cause cold sores and genital herpes. We found that IFN-λ limited the severity of HSV skin lesions without affecting viral load and that this protective effect required IFN-λ signaling in both keratinocytes and neutrophils. We found that IFN-λ signaling in keratinocytes suppressed neutrophil recruitment to the skin and that depleting neutrophils protected against severe HSV skin lesions in the absence of IFN-λ. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection and suggests potential applications for IFN-λ in treating viral skin infections.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Camundongos , Animais , Interferon lambda , Neutrófilos , Citocinas , Interferon-alfa , Camundongos Knockout , Antivirais/farmacologia
5.
Virus Res ; 339: 199286, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016504

RESUMO

The genetic diversity of the coronavirus (CoV) family poses a significant challenge for drug discovery and development. Traditional antiviral drugs often target specific viral proteins from specific viruses which limits their use, especially against novel emerging viruses. Antivirals with broad-spectrum activity overcome this limitation by targeting highly conserved regions or catalytic domains within viral proteins that are essential for replication. For rapid identification of small molecules with broad antiviral activity, assays with viruses representing family-wide genetic diversity are needed. Viruses engineered to express a reporter gene (i.e. luminescence, fluorescence, etc.) can increase the efficiency, sensitivity or precision of drug screening over classical measures of replication like observation of cytopathic effect or measurement of infectious titers. We have previously developed reporter virus systems for multiple other endemic, pandemic, epidemic and enzootic CoV. Human CoV OC43 (HCoV-OC43) is a human endemic CoV that causes respiratory infection with age-related exacerbations of pathogenesis. Here, we describe the development of a novel recombinant HCoV-OC43 reporter virus that expresses nano-luciferase (HCoV-OC43 nLuc), and its potential application for screening of antivirals against CoV.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Coronavirus , Humanos , Coronavirus Humano OC43/genética , Coronavirus/genética , Proteínas Virais , Antivirais/farmacologia , Antivirais/uso terapêutico
6.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036525

RESUMO

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Assuntos
Anticorpos Antivirais , SARS-CoV-2 , Humanos , Animais , Camundongos , Epitopos , Epitopos Imunodominantes , Peptídeos , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes
7.
Cell Rep ; 42(10): 113248, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858337

RESUMO

The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Camundongos , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes , SARS-CoV-2
8.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745383

RESUMO

Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-αß receptor (Ifnar1-/- Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions, independent of a direct effect on viral load. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity, and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils or blocking CXCL9 protected against severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection, and suggest potential applications for IFN-λ in treating viral skin infections.

9.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37749254

RESUMO

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Cricetinae , Humanos , Animais , Camundongos , Especificidade de Hospedeiro , Pangolins , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinas contra COVID-19 , Camundongos Endogâmicos BALB C
10.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37293083

RESUMO

The emergence of three distinct highly pathogenic human coronaviruses - SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 - underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.

11.
PLoS Pathog ; 19(2): e1011168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812267

RESUMO

Angiotensin-converting enzyme 2 (ACE2), part of the renin-angiotensin system (RAS), serves as an entry point for SARS-CoV-2, leading to viral proliferation in permissive cell types. Using mouse lines in which the Ace2 locus has been humanized by syntenic replacement, we show that regulation of basal and interferon induced ACE2 expression, relative expression levels of different ACE2 transcripts, and sexual dimorphism in ACE2 expression are unique to each species, differ between tissues, and are determined by both intragenic and upstream promoter elements. Our results indicate that the higher levels of expression of ACE2 observed in the lungs of mice relative to humans may reflect the fact that the mouse promoter drives expression of ACE2 in populous airway club cells while the human promoter drives expression in alveolar type 2 (AT2) cells. In contrast to transgenic mice in which human ACE2 is expressed in ciliated cells under the control of the human FOXJ1 promoter, mice expressing ACE2 in club cells under the control of the endogenous Ace2 promoter show a robust immune response after infection with SARS-CoV-2, leading to rapid clearance of the virus. This supports a model in which differential expression of ACE2 determines which cell types in the lung are infected, and this in turn modulates the host response and outcome of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Receptores Virais , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Camundongos Transgênicos , Receptores Virais/genética , SARS-CoV-2 , Tropismo Viral
12.
Sci Immunol ; 8(79): eadg4686, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608110

RESUMO

Delivery of mRNAs encoding influenza HA antigens covering all known subtypes and lineages elicits cross-reactive and protective immunity.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Reações Cruzadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA