Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
mBio ; 14(5): e0086323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772820

RESUMO

IMPORTANCE: Miscommunication of antiviral and antibacterial immune signals drives worsened morbidity and mortality during respiratory viral-bacterial coinfections. Extracellular vesicles (EVs) are a form of intercellular communication with broad implications during infection, and here we show that epithelium-derived EVs released during the antiviral response impair the antibacterial activity of macrophages, an innate immune cell crucial for bacterial control in the airway. Macrophages exposed to antiviral EVs display reduced clearance of Staphylococcus aureus as well as altered inflammatory signaling and anti-inflammatory metabolic reprogramming, thus revealing EVs as a source of dysregulated epithelium-macrophage crosstalk during coinfection. As effective epithelium-macrophage communication is critical in mounting an appropriate immune response, this novel observation of epithelium-macrophage crosstalk shaping macrophage metabolism and antimicrobial function provides exciting new insight and improves our understanding of immune dysfunction during respiratory coinfections.


Assuntos
Coinfecção , Vesículas Extracelulares , Infecções Estafilocócicas , Humanos , Coinfecção/metabolismo , Macrófagos , Infecções Estafilocócicas/metabolismo , Antibacterianos/metabolismo , Antivirais/metabolismo
2.
J Biol Chem ; 297(6): 101330, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688667

RESUMO

CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-ß receptor (TGF-ßR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-ßR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-ßR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-ß, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.


Assuntos
Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina-6/imunologia , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Linhagem Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Transdução de Sinais , Linfócitos T Reguladores/citologia , Células Th17/citologia
3.
Mol Cell Proteomics ; 19(11): 1896-1909, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868373

RESUMO

Studies in the yeast Saccharomyces cerevisiae have helped define mechanisms underlying the activity of the ubiquitin-proteasome system (UPS), uncover the proteasome assembly pathway, and link the UPS to the maintenance of cellular homeostasis. However, the spectrum of UPS substrates is incompletely defined, even though multiple techniques-including MS-have been used. Therefore, we developed a substrate trapping proteomics workflow to identify previously unknown UPS substrates. We first generated a yeast strain with an epitope tagged proteasome subunit to which a proteasome inhibitor could be applied. Parallel experiments utilized inhibitor insensitive strains or strains lacking the tagged subunit. After affinity isolation, enriched proteins were resolved, in-gel digested, and analyzed by high resolution liquid chromatography-tandem MS. A total of 149 proteasome partners were identified, including all 33 proteasome subunits. When we next compared data between inhibitor sensitive and resistant cells, 27 proteasome partners were significantly enriched. Among these proteins were known UPS substrates and proteins that escort ubiquitinated substrates to the proteasome. We also detected Erg25 as a high-confidence partner. Erg25 is a methyl oxidase that converts dimethylzymosterol to zymosterol, a precursor of the plasma membrane sterol, ergosterol. Because Erg25 is a resident of the endoplasmic reticulum (ER) and had not previously been directly characterized as a UPS substrate, we asked whether Erg25 is a target of the ER associated degradation (ERAD) pathway, which most commonly mediates proteasome-dependent destruction of aberrant proteins. As anticipated, Erg25 was ubiquitinated and associated with stalled proteasomes. Further, Erg25 degradation depended on ERAD-associated ubiquitin ligases and was regulated by sterol synthesis. These data expand the cohort of lipid biosynthetic enzymes targeted for ERAD, highlight the role of the UPS in maintaining ER function, and provide a novel tool to uncover other UPS substrates via manipulations of our engineered strain.


Assuntos
Degradação Associada com o Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Oxigenases de Função Mista/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Ergosterol/biossíntese , Ergosterol/metabolismo , Leupeptinas/farmacologia , Oxigenases de Função Mista/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Ubiquitinação
4.
J Biol Chem ; 295(24): 8236-8251, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32358062

RESUMO

The cytokine content in tissue microenvironments shapes the functional capacity of a T cell. This capacity depends on the integration of extracellular signaling through multiple receptors, including the T-cell receptor (TCR), co-receptors, and cytokine receptors. Transforming growth factor ß (TGF-ß) signals through its cognate receptor, TGFßR, to SMAD family member proteins and contributes to the generation of a transcriptional program that promotes regulatory T-cell differentiation. In addition to transcription, here we identified specific signaling networks that are regulated by TGFßR. Using an array of biochemical approaches, including immunoblotting, kinase assays, immunoprecipitation, and flow cytometry, we found that TGFßR signaling promotes the formation of a SMAD3/4-protein kinase A (PKA) complex that activates C-terminal Src kinase (CSK) and thereby down-regulates kinases involved in proximal TCR activation. Additionally, TGFßR signaling potentiated CSK phosphorylation of the P85 subunit in the P85-P110 phosphoinositide 3-kinase (PI3K) heterodimer, which reduced PI3K activity and down-regulated the activation of proteins that require phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) for their activation. Moreover, TGFßR-mediated disruption of the P85-P110 interaction enabled P85 binding to a lipid phosphatase, phosphatase and tensin homolog (PTEN), aiding in the maintenance of PTEN abundance and thereby promoting elevated PtdIns(4,5)P2 levels in response to TGFßR signaling. Taken together, these results highlight that TGF-ß influences the trajectory of early T-cell activation by altering PI3K activity and PtdIns levels.


Assuntos
Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatidilinositóis/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ativação Enzimática , Estabilidade Enzimática , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Multimerização Proteica , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Proteína Smad4/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
5.
J Immunol ; 203(11): 2771-2775, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628154

RESUMO

TCR signaling activates kinases including AKT/mTOR that engage metabolic networks to support the energetic demands of a T cell during an immune response. It is realized that CD4+ T cell subsets have different metabolic requirements. Yet, how TCR signaling is coupled to the regulation of intermediate metabolites and how changes in metabolite flux contribute to T cell differentiation are less established. We find that TCR signaling regulates acetyl-CoA metabolism via AKT in murine CD4+ T cells. Weak TCR signals promote AKT-catalyzed phosphorylation and inhibition of citrate synthase, elevated acetyl-CoA levels, and hyperacetylation of mitochondrial proteins. Genetic knockdown of citrate synthase promotes increased nuclear acetyl-CoA levels, increased histone acetylation at the FOXP3 promotor and induction of FOXP3 transcription. These data identify a circuit between AKT signaling and acetyl-CoA metabolism regulated via TCR signal strength and that transient fluctuations in acetyl-CoA levels function in T cell fate decisions.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL
6.
Nat Immunol ; 20(6): 736-746, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011187

RESUMO

B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. In GCBC, BCR signals are constrained, but the mechanisms are not well understood. Here we describe a GC-specific, AKT-kinase-driven negative feedback loop that attenuates BCR signaling. Mass spectrometry revealed that AKT target activity was altered in GCBCs compared with naive B cells. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn controlled by GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. We found that phosphorylation enhances enzymatic activity of these proteins, creating a negative feedback loop that dampens upstream BCR signaling. AKT inhibition relieved this negative feedback and enhanced activation of BCR-proximal kinase LYN, as well as downstream BCR signaling molecules in GCBCs.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Biologia Computacional/métodos , Ativação Enzimática , Técnicas de Inativação de Genes , Humanos , Camundongos Knockout , Fosforilação , Especificidade por Substrato
7.
J Biol Chem ; 294(13): 4793-4805, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30692200

RESUMO

T-cell receptor (TCR) signaling strength is a dominant factor regulating T-cell differentiation, thymic development, and cytokine signaling. The molecular mechanisms by which TCR signal strength is transduced to downstream signaling networks remains ill-defined. Using computational modeling, biochemical assays, and imaging flow cytometry, we found here that TCR signal strength differentially generates phosphatidylinositol species. Weak TCR signals generated elevated phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and reduced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) levels, whereas strong TCR signals reduced PI(4,5)P2 and elevated PIP3 levels. A proteomics screen revealed that focal adhesion kinase bound PI(4,5)P2, biochemical assays disclosed that focal adhesion kinase is preferentially activated by weak TCR signals and is required for optimal Treg induction, and further biochemical experiments revealed how TCR signaling strength regulates AKT activation. Low PIP3 levels generated by weak TCR signals were sufficient to activate phosphoinositide-dependent kinase-1 to phosphorylate AKT on Thr-308 but insufficient to activate mTOR complex 2 (mTORC2), whereas elevated PIP3 levels generated by a strong TCR signal were required to activate mTORC2 to phosphorylate Ser-473 on AKT. Our results provide support for a model that links TCR signaling to mTORC2 activation via phosphoinositide 3-kinase signaling. Together, the findings in this work establish that T cells measure TCR signal strength by generating different levels of phosphatidylinositol species that engage alternate signaling networks to control cell fate decisions.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Animais , Linfócitos T CD4-Positivos/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
J Biol Chem ; 294(7): 2397-2406, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30573679

RESUMO

Compared with naïve T cells, memory CD8+ T cells have a transcriptional landscape and proteome that are optimized to generate a more rapid and robust response to secondary infection. Additionally, rewired kinase signal transduction pathways likely contribute to the superior recall response of memory CD8+ T cells, but this idea has not been experimentally confirmed. Herein, we utilized an MS approach to identify proteins that are phosphorylated on tyrosine residues in response to Listeria-induced T-cell receptor (TCR) stimulation in both naïve and memory CD8+ T cells from mice and separated by fluorescence- and flow cytometry-based cell sorting. This analysis identified substantial differences in tyrosine kinase signaling networks between naïve and memory CD8+ T cells. We also observed that an important axis in memory CD8+ T cells couples Janus kinase 2 (JAK2) hyperactivation to the phosphorylation of CREB-binding protein (CBP). Functionally, JAK2-catalyzed phosphorylation enabled CBP to bind with higher affinity to acetylated histone peptides, indicating a potential epigenetic mechanism that could contribute to rapid initiation of transcriptional programs in memory CD8+ T cells. Moreover, we found that CBP itself is essential for conventional effector and memory CD8+ T-cell formation. These results indicate how signaling pathways are altered to promote CD8+ memory cell formation and rapid responses to and protection from repeat infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína de Ligação a CREB/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Transdução de Sinais/imunologia , Acetilação , Animais , Linfócitos T CD8-Positivos/citologia , Proteína de Ligação a CREB/genética , Diferenciação Celular/genética , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Histonas/genética , Histonas/imunologia , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Camundongos , Camundongos Knockout , Fosforilação/genética , Fosforilação/imunologia , Transdução de Sinais/genética
9.
Nat Protoc ; 9(7): 1533-48, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24901738

RESUMO

This article describes a method to quantify the movements of larval zebrafish in multiwell plates, using the open-source MATLAB applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB scripts; and implementation of validation controls. The method is reliable, automated and flexible, requires <1 h of hands-on work for completion once optimized and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine the following: positional preference; displacement, velocity and acceleration; and duration and frequency of movement events and rest periods. This approach is widely applicable to the analysis of spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multiwell plate format suitable for high-throughput applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Atividade Motora/fisiologia , Software , Peixe-Zebra/fisiologia , Animais , Processamento de Imagem Assistida por Computador/instrumentação , Larva , Gravação em Vídeo/instrumentação , Gravação em Vídeo/métodos
10.
Toxicol Appl Pharmacol ; 247(2): 146-57, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20600219

RESUMO

Microbial stimuli and atmospheric particulate matter (PM) interact to amplify the release of inflammatory and immune-modulating cytokines. The basis of this interaction, however, is not known. Cultured human lung fibroblasts (HLF) were used to determine whether various protein kinase pathways were involved in the release of IL-6 following combined exposure to the PM-derived metal, Ni, and M. fermentans-derived macrophage-activating lipopeptide 2 (MALP-2), a toll-like receptor 2 agonist. Synergistic release of IL-6 by MALP-2 and NiSO4 was obvious after 8h of co-stimulation and correlated with a late phase accumulation of IL-6 mRNA. Ni and MALP-2, alone or together, all led to rapid and transient phosphorylations of ERK(1/2) and JNK/SAPK of similar magnitude. p38 phosphorylation, however, was observed only after prolonged treatment of cells with both stimuli together. A constitutive level of PI3K-dependent Akt phosphorylation remained unchanged by Ni and/or MALP-2 exposure. IL-6 induced by Ni/MALP-2 co-exposure was partially dependent on activity of HIF-1alpha and COX-2 as shown by targeted knockdown using siRNA. IL-6 release in response to Ni/MALP-2 was partially sensitive to pharmacological inhibition of ERK(1/2), p38, and PI3K signaling. The protein kinase inhibitors had minimal or no effects on Ni/MALP-2-induced accumulation of HIF-1alpha protein, however, COX-2 expression and, more markedly PGE(2) production, were suppressed by LY294002, SB203580, and U0126. Thus, Ni/MALP-2 interactions involve multiple protein kinase pathways (ERK(1/2), p38, and PI3K) that modulate events downstream from the early accumulation of HIF-1alpha to promote IL-6 gene expression directly or secondarily, through COX-2-derived autocrine products like PGE(2).


Assuntos
Interleucina-6/metabolismo , Lipopeptídeos/toxicidade , Níquel/toxicidade , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/agonistas , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Sinergismo Farmacológico , Fibroblastos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA