Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656542

RESUMO

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Assuntos
Comportamento Exploratório , Hipocampo , Plasticidade Neuronal , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Peptídeo Intestinal Vasoativo , Animais , Masculino , Ratos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Comportamento Exploratório/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
2.
Biomedicines ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540244

RESUMO

Novelty detection, crucial to episodic memory formation, is impaired in epileptic patients with mesial temporal lobe resection. Mismatch novelty detection, that activates the hippocampal CA1 area in humans and is vital for memory reformulation and reconsolidation, is also impaired in patients with hippocampal lesions. In this work, we investigated the response to mismatch novelty, as occurs with the new location of known objects in a familiar environment, in the Li2+-pilocarpine rat model of TLE and its correlation with hippocampal monoaminergic markers. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks at the time of behavioural testing showed impaired spatial learning in the radial arm maze, as described. Concurrently, SRS rats displayed impaired exploratory responses to mismatch novelty, yet novel object recognition was not significantly affected in SRS rats. While the levels of serotonin and dopamine transporters were mildly decreased in hippocampal membranes from SRS rats, the levels on the norepinephrine transporter, tyrosine hydroxylase and dopamine-ß-hydroxylase were enhanced, hinting for an augmentation, rather than an impairment in noradrenergic function in SRS animals. Altogether, this reveals that mismatch novelty detection is particularly affected by hippocampal damage associated to the Li2+-pilocarpine model of epilepsy 4-8 weeks after the onset of SRSs and suggests that deficits in mismatch novelty detection may substantially contribute to cognitive impairment in MTLE. As such, behavioural tasks based on these aspects of mismatch novelty may prove useful in the development of cognitive therapy strategies aiming to rescue cognitive deficits observed in epilepsy.

3.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540797

RESUMO

Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.


Assuntos
Potenciação de Longa Duração , Estimulação Magnética Transcraniana , Ratos , Animais , Potenciação de Longa Duração/fisiologia , Hipocampo , Plasticidade Neuronal , Interneurônios
4.
Neurochem Int ; 158: 105383, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787395

RESUMO

VIP binding sites are upregulated in mesial temporal lobe epilepsy (MTLE) patients, also suffering from severe cognitive deficits. Although altered VIP and VIP receptor levels were described in rodent models of epilepsy, the VIP receptor subtype(s) were never identified. We now investigated how VPAC1 and VPAC2 receptor levels change in the Li2+-pilocarpine rat model of MTLE. Cognitive decline and altered synaptic plasticity as estimated from phosphorylation of AMPA GluA1 subunit on Ser831 and Ser845 and AMPA GluA1/GluA2 ratio was also probed. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks showed impaired learning in the radial arm maze (RAM) and presented decreased VPAC1 and increased VPAC2 receptor levels. In addition, SRSs rats showed increased AMPA GluA1 phosphorylation in Ser831 and Ser845, marked decrease in GluA1 levels and a milder decrease in GluA2 levels. Consequently, the GluA1/GluA2 ratio was also decreased in SRSs rats. Altered VIP receptor levels may differentially prevent or contribute to MTLE pathology, since VPAC1 receptors promote the endogenous control of LTP, mediate endogenous VIP neuroprotection against altered synaptic plasticity following epileptiform activity, and mediate anti-inflammatory actions in microglia, while VPAC2 receptors mediate VIP endogenous neuroprotection against neonatal excitotoxicity and prevent reactive astrogliosis. This discovery imposes a different mindset for considering VIP receptors as therapeutic targets in MTLE, allowing a differential targeting of the cellular events contributing to epileptogenesis.


Assuntos
Epilepsia do Lobo Temporal , Receptores de Peptídeo Intestinal Vasoativo , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Pilocarpina/toxicidade , Ratos , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Convulsões/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
5.
Biology (Basel) ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625355

RESUMO

Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have scarcely been investigated. We studied the modulation of CA1 LTP induced by TBS via endogenous VIP release in hippocampal slices from young-adult Wistar rats using selective VPAC1 and VPAC2 receptor antagonists, evaluating its consequence for the phosphorylation of CamKII, GluA1 AMPA receptor subunits and Kv4.2 potassium channels in total hippocampal membranes obtained from TBS stimulated slices. Endogenous VIP, acting on VPAC1 (but not VPAC2) receptors, inhibited CA1 hippocampal LTP induced by TBS in young adult Wistar rats and this effect was dependent on GABAergic transmission and relied on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulated the autophosphorylation of CaMKII and the expression and Ser438 phosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr607. Altogether, this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC1 receptors in interneurons. This may impact the autophosphorylation of CaMKII during LTP, as well as the expression and phosphorylation of Kv4.2 K+ channels at hippocampal pyramidal cell dendrites.

6.
Eur J Neurosci ; 54(4): 5272-5292, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34251729

RESUMO

Long-term potentiation (LTP) is a highly studied cellular process, yet determining the transduction and gamma aminobutyric acid (GABAergic) pathways that are the essential versus modulatory for LTP elicited by theta burst stimulation (TBS) in the hippocampal Cornu Ammonis 1 (CA1) area is still elusive, due to the use of different TBS intensities, patterns or different rodent/cellular models. We now characterised the developmental maturation and the transduction and GABAergic pathways required for mild TBS-induced LTP in hippocampal CA1 area in male rats. LTP induced by TBS (5x4) (five bursts of four pulses delivered at 100 Hz) lasted for up to 3 h and was increasingly larger from weaning to adulthood. Stronger TBS patterns - TBS (15x4) or three TBS (15x4) separated by 6 min induced nearly maximal LTP not being the best choice to study the value of LTP-enhancing drugs. LTP induced by TBS (5x4) in young adults was fully dependent on N-methyl D-aspartate (NMDA) receptor and calmodulin-dependent protein kinase II (CaMKII) activity but independent of protein kinase A (PKA) or protein kinase C (PKC) activity. Furthermore, it was partially dependent on GABAB receptor activation and was potentiated by GABAA receptor blockade and less by GAT-1 transporter blockade. AMPA GluA1 phosphorylation on Ser831 (CaMKII target) but not GluA1 Ser845 (PKA target) was essential for LTP expression. The phosphorylation of the Kv4.2 channel was observed at Ser438 (CaMKII target) but not at Thr602 or Thr607 (ERK/MAPK pathway target). This suggests that cellular kinases like PKA, PKC, or kinases of the ERK/MAPK family although important modulators of TBS (5x4)-induced LTP may not be essential for its expression in the CA1 area of the hippocampus.


Assuntos
Região CA1 Hipocampal , Potenciação de Longa Duração , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Hipocampo , Masculino , Ratos , Desmame
8.
Front Mol Neurosci ; 13: 146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848604

RESUMO

Corticosteroids exert a dual role in eukaryotic cells through their action via (1) intracellular receptors (slow genomic responses), or (2) membrane-bound receptors (fast non-genomic responses). Highly vulnerable regions of the brain, like the hippocampus, express high amounts of corticosteroid receptors, yet their actions on ionic currents and neurotransmitters release are still undefined. Here, we investigated the effect of methylprednisolone (MP) on GABA and glutamate (Glu) release from isolated nerve terminals of the rat hippocampus. MP favored both spontaneous and depolarization-evoked [14C]Glu release from rat hippocampal nerve terminals, without affecting [3H]GABA outflow. Facilitation of [14C]Glu release by MP is mediated by a Na+-dependent Ca2+-independent non-genomic mechanism relying on the activation of membrane-bound glucocorticoid (GR) and mineralocorticoid (MR) receptors sensitive to their antagonists mifepristone and spironolactone, respectively. The involvement of Na+-dependent high-affinity EAAT transport reversal was inferred by blockage of MP-induced [14C]Glu release by DL-TBOA. Depolarization-evoked [3H]GABA release in the presence of MP was partially attenuated by the selective P2X7 receptor antagonist A-438079, but this compound did not affect the release of [14C]Glu. Data indicate that MP differentially affects GABA and glutamate release from rat hippocampal nerve terminals via fast non-genomic mechanisms putatively involving the activation of membrane-bound corticosteroid receptors. Facilitation of Glu release strengthen previous assumptions that MP may act as a cognitive enhancer in rats, while crosstalk with ATP-sensitive P2X7 receptors may promote a therapeutically desirable GABAergic inhibitory control during paroxysmal epileptic crisis that might be particularly relevant when extracellular Ca2+ levels decrease below the threshold required for transmitter release.

9.
Front Cell Neurosci ; 14: 153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595454

RESUMO

Vasoactive intestinal peptide (VIP) is an important modulatory peptide throughout the CNS acting as a neurotransmitter, neurotrophic or neuroprotective factor. In the hippocampus, a brain area implicated in learning and memory processes, VIP has a crucial role in the control of GABAergic transmission and pyramidal cell activity in response to specific network activity by either VIP-containing basket cells or interneuron-selective (IS) interneurons and this appears to have a differential impact in hippocampal-dependent cognition. At the cellular level, VIP regulates synaptic transmission by either promoting disinhibition, through activation of VPAC1 receptors, or enhancing pyramidal cell excitability, through activation of VPAC2 receptors. These actions also control several important synaptic plasticity phenomena such as long-term potentiation (LTP) and long-term depression (LTD). This paper reviews the current knowledge on the activation and multiple functions of VIP expressing cells in the hippocampus and their role in controlling synaptic transmission, synaptic plasticity and learning and memory processes, discussing also the role of VPAC1 and VPAC2 VIP receptors in the regulation of these different processes. Furthermore, we address the current knowledge regarding changes in VIP mediated neurotransmission in epileptogenesis and mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), and discuss the therapeutic opportunities of using selective VIP receptor ligands to prevent epileptogenesis and cognitive decline in MTLE-HS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA