Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163060

RESUMO

Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.

2.
Immunity ; 56(3): 606-619.e7, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36750100

RESUMO

Although mice normally enter labor when their ovaries stop producing progesterone (luteolysis), parturition can also be triggered in this species through uterus-intrinsic pathways potentially analogous to the ones that trigger parturition in humans. Such pathways, however, remain largely undefined in both species. Here, we report that mice deficient in innate type 2 immunity experienced profound parturition delays when manipulated endocrinologically to circumvent luteolysis, thus obliging them to enter labor through uterus-intrinsic pathways. We found that these pathways were in part driven by the alarmin IL-33 produced by uterine interstitial fibroblasts. We also implicated important roles for uterine group 2 innate lymphoid cells, which demonstrated IL-33-dependent activation prior to labor onset, and eosinophils, which displayed evidence of elevated turnover in the prepartum uterus. These findings reveal a role for innate type 2 immunity in controlling the timing of labor onset through a cascade potentially relevant to human parturition.


Assuntos
Interleucina-33 , Luteólise , Gravidez , Feminino , Camundongos , Animais , Humanos , Interleucina-33/metabolismo , Imunidade Inata , Miométrio/metabolismo , Linfócitos , Parto/metabolismo
3.
Immunity ; 56(3): 576-591.e10, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36822205

RESUMO

Aberrant tissue-immune interactions are the hallmark of diverse chronic lung diseases. Here, we sought to define these interactions in emphysema, a progressive disease characterized by infectious exacerbations and loss of alveolar epithelium. Single-cell analysis of human emphysema lungs revealed the expansion of tissue-resident lymphocytes (TRLs). Murine studies identified a stromal niche for TRLs that expresses Hhip, a disease-variant gene downregulated in emphysema. Stromal-specific deletion of Hhip induced the topographic expansion of TRLs in the lung that was mediated by a hyperactive hedgehog-IL-7 axis. 3D immune-stem cell organoids and animal models of viral exacerbations demonstrated that expanded TRLs suppressed alveolar stem cell growth through interferon gamma (IFNγ). Finally, we uncovered an IFNγ-sensitive subset of human alveolar stem cells that was preferentially lost in emphysema. Thus, we delineate a stromal-lymphocyte-epithelial stem cell axis in the lung that is modified by a disease-variant gene and confers host susceptibility to emphysema.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Enfisema Pulmonar/genética , Pulmão , Linfócitos , Células-Tronco
4.
Immunity ; 55(2): 254-271.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139352

RESUMO

Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.


Assuntos
Inflamação/imunologia , Interferon gama/imunologia , Subpopulações de Linfócitos/imunologia , Células Th2/imunologia , Animais , Morte Celular/imunologia , Movimento Celular/imunologia , Hipersensibilidade/imunologia , Imunidade Inata , Interleucina-33/imunologia , Interleucina-5/metabolismo , Listeria monocytogenes , Listeriose/imunologia , Listeriose/mortalidade , Fígado/imunologia , Pulmão/imunologia , Subpopulações de Linfócitos/metabolismo , Lisofosfolipídeos/imunologia , Camundongos , Tecido Parenquimatoso/imunologia , Esfingosina/análogos & derivados , Esfingosina/imunologia , Células Th1/imunologia , Células Th2/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903257

RESUMO

The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvß5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/ß5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvß5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/ß5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvß5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.


Assuntos
Antígenos de Superfície/genética , Resistência à Insulina/genética , Insulina/genética , Proteínas do Leite/genética , Receptores de Vitronectina/genética , Animais , Antígenos CD/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicolipídeos/genética , Glicoproteínas/genética , Homeostase/genética , Humanos , Integrina alfaVbeta3/genética , Gotículas Lipídicas , Camundongos , Músculo Esquelético/metabolismo , Receptor de Insulina/genética , Transdução de Sinais/genética
6.
Nat Neurosci ; 24(2): 234-244, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526922

RESUMO

Fibrosis is a common pathological response to inflammation in many peripheral tissues and can prevent tissue regeneration and repair. Here, we identified persistent fibrotic scarring in the CNS following immune cell infiltration in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Using lineage tracing and single-cell sequencing in EAE, we determined that the majority of the fibrotic scar is derived from proliferative CNS fibroblasts, not pericytes or infiltrating bone marrow-derived cells. Ablating proliferating fibrotic cells using cell-specific expression of herpes thymidine kinase led to an increase in oligodendrocyte lineage cells within the inflammatory lesions and a reduction in motor disability. We further identified that interferon-gamma pathway genes are enriched in CNS fibrotic cells, and the fibrotic cell-specific deletion of Ifngr1 resulted in reduced fibrotic scarring in EAE. These data delineate a framework for understanding the CNS fibrotic response.


Assuntos
Barreira Hematoencefálica/patologia , Encefalomielite Autoimune Experimental/patologia , Fibroblastos/patologia , Fibrose/patologia , Infiltração de Neutrófilos , Medula Espinal/patologia , Animais , Camundongos , Oligodendroglia/patologia
7.
Curr Opin Immunol ; 64: 34-41, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32339862

RESUMO

Advances in microscopy, genetically modified mice, and single-cell RNA sequencing have begun to deconvolute the composition and function of tissue immune niches. Here we discuss the evidence that the adventitia, the outermost layer of larger blood vessels, is a conserved niche and tissue immune outpost for multiple immune cells, including group 2 innate lymphoid cells (ILC2) and subsets of tissue-resident memory T cells, macrophages, and dendritic cells. We also describe the unique non-immune composition at adventitial regions, including fibroblast-like stromal cell subsets, lymphatic and blood endothelial cells, and neurons, and review how immune-stromal crosstalk impacts regional tissue immunity, organ adaptation, and disease.


Assuntos
Túnica Adventícia , Imunidade Inata , Animais , Células Endoteliais , Humanos , Linfócitos , Camundongos , Células Estromais
8.
Cancers (Basel) ; 11(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382462

RESUMO

Hypercoagulable state is linked to cancer progression; however, the precise role of the coagulation cascade is poorly described. Herein, we examined the contribution of a hypercoagulative state through the administration of intravenous Coagulation Factor Xa (FXa), on the growth of solid human tumors and the experimental metastasis of the B16F10 melanoma in mouse models. FXa increased solid tumor volume and lung, liver, kidney and lymph node metastasis of tail-vein injected B16F10 cells. Concentrating on the metastasis model, upon coadministration of the anticoagulant Dalteparin, lung metastasis was significantly reduced, and no metastasis was observed in other organs. FXa did not directly alter proliferation, migration or invasion of cancer cells in vitro. Alternatively, FXa upon endothelial cells promoted cytoskeleton contraction, disrupted membrane VE-Cadherin pattern, heightened endothelial-hyperpermeability, increased inflammatory adhesion molecules and enhanced B16F10 adhesion under flow conditions. Microarray analysis of endothelial cells treated with FXa demonstrated elevated expression of inflammatory transcripts. Accordingly, FXa treatment increased immune cell infiltration in mouse lungs, an effect reduced by dalteparin. Taken together, our results suggest that FXa increases B16F10 metastasis via endothelial cell activation and enhanced cancer cell-endothelium adhesion advocating that the coagulation system is not merely a bystander in the process of cancer metastasis.

9.
Front Immunol ; 10: 826, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057549

RESUMO

Acute kidney injury (AKI) can be fatal and is a well-defined risk factor for the development of chronic kidney disease. Group 2 innate lymphoid cells (ILC2s) are innate producers of type-2 cytokines and are critical regulators of homeostasis in peripheral organs. However, our knowledge of their function in the kidney is relatively limited. Recent evidence suggests that increasing ILC2 numbers by systemic administration of recombinant interleukin (IL)-25 or IL-33 protects against renal injury. Whilst ILC2s can be induced to protect against ischemic- or chemical-induced AKI, the impact of ILC2 deficiency or depletion on the severity of renal injury is unknown. Firstly, the phenotype and location of ILC2s in the kidney was assessed under homeostatic conditions. Kidney ILC2s constitutively expressed high levels of IL-5 and were located in close proximity to the renal vasculature. To test the functional role of ILC2s in the kidney, an experimental model of renal ischemia-reperfusion injury (IRI) was used and the severity of injury was assessed in wild-type, ILC2-reduced, ILC2-deficient, and ILC2-depleted mice. Surprisingly, there were no differences in histopathology, collagen deposition or mRNA expression of injury-associated (Lcn2), inflammatory (Cxcl1, Cxcl2, and Tnf) or extracellular matrix (Col1a1, Fn1) factors following IRI in the absence of ILC2s. These data suggest the absence of ILC2s does not alter the severity of renal injury, suggesting possible redundancy. Therefore, other mechanisms of type 2-mediated immune cell activation likely compensate in the absence of ILC2s. Hence, a loss of ILC2s is unlikely to increase susceptibility to, or severity of AKI.


Assuntos
Injúria Renal Aguda/imunologia , Rim/imunologia , Linfócitos/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Biomarcadores , Suscetibilidade a Doenças/imunologia , Humanos , Obesidade/complicações , Doenças Respiratórias/imunologia
10.
J Exp Med ; 216(4): 900-915, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30846482

RESUMO

Microglia play a pivotal role in the coordination of brain development and have emerged as a critical determinant in the progression of neurodegenerative diseases; however, the role of microglia in the onset and progression of neurodevelopmental disorders is less clear. Here we show that conditional deletion of αVß8 from the central nervous system (Itgb8ΔCNS mice) blocks microglia in their normal stepwise development from immature precursors to mature microglia. These "dysmature" microglia appear to result from reduced TGFß signaling during a critical perinatal window, are distinct from microglia with induced reduction in TGFß signaling during adulthood, and directly cause a unique neurodevelopmental syndrome characterized by oligodendrocyte maturational arrest, interneuron loss, and spastic neuromotor dysfunction. Consistent with this, early (but not late) microglia depletion completely reverses this phenotype. Together, these data identify novel roles for αVß8 and TGFß signaling in coordinating microgliogenesis with brain development and implicate abnormally programmed microglia or their products in human neurodevelopmental disorders that share this neuropathology.


Assuntos
Integrinas/metabolismo , Interneurônios/metabolismo , Microglia/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Integrinas/genética , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos do Neurodesenvolvimento/metabolismo , Oligodendroglia/metabolismo , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Fator de Crescimento Transformador beta1/genética
11.
Immunity ; 50(3): 707-722.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824323

RESUMO

Type 2 lymphocytes promote both physiologic tissue remodeling and allergic pathology, yet their physical tissue niches are poorly described. Here, we used quantitative imaging to define the tissue niches of group 2 innate lymphoid cells (ILC2s), which are critical instigators of type 2 immunity. We identified a dominant adventitial niche around lung bronchi and larger vessels in multiple tissues, where ILC2s localized with subsets of dendritic and regulatory T cells. However, ILC2s were most intimately associated with adventitial stromal cells (ASCs), a mesenchymal fibroblast-like subset that expresses interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP). In vitro, ASCs produced TSLP that supported ILC2 accumulation and activation. ILC2s and IL-13 drove reciprocal ASC expansion and IL-33 expression. During helminth infection, ASC depletion impaired lung ILC2 and Th2 cell accumulation and function, which are in part dependent on ASC-derived IL-33. These data indicate that adventitial niches are conserved sites where ASCs regulate type 2 lymphocyte expansion and function.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Células Estromais/imunologia , Animais , Brônquios/imunologia , Citocinas/imunologia , Interleucina-13/imunologia , Interleucina-33/imunologia , Camundongos , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Linfopoietina do Estroma do Timo
12.
Immunity ; 47(5): 812-814, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166583

RESUMO

Regulation of pancreatic insulin production is pivotal in the pathophysiology and treatment of diabetes. In this issue of Immunity, Dalmas et al. (2017) describe a type 2 immune circuit where pancreatic interleukin-33 (IL-33) promotes insulin secretion via the activity of islet-associated group 2 innate lymphoid cells (ILC2s).


Assuntos
Imunidade Inata , Interleucina-33 , Secreção de Insulina , Linfócitos , Células Mieloides , Tretinoína
13.
Cell Cycle ; 16(19): 1835-1847, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28820341

RESUMO

The emergence of haematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelium results in the formation of sizeable HSPC clusters attached to the vascular wall. We evaluate the cell cycle and proliferation of HSPCs involved in cluster formation, as well as the molecular signatures from their initial appearance to the point when cluster cells are capable of adult engraftment (definitive HSCs). We uncover a non-clonal origin of HSPC clusters with differing cell cycle, migration, and cell signaling attributes. In addition, we find that the complement cascade is highly enriched in mature HSPC clusters, possibly delineating a new role for this pathway in engraftment.


Assuntos
Ciclo Celular/genética , Proteínas do Sistema Complemento/genética , Endotélio Vascular/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular , Divisão Celular , Proteínas do Sistema Complemento/metabolismo , Embrião de Mamíferos , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Hemangioblastos/citologia , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Transgênicos , Gravidez , Transdução de Sinais , Coloração e Rotulagem/métodos
14.
Science ; 355(6330)2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302796

RESUMO

Uridine, a pyrimidine nucleoside present at high levels in the plasma of rodents and humans, is critical for RNA synthesis, glycogen deposition, and many other essential cellular processes. It also contributes to systemic metabolism, but the underlying mechanisms remain unclear. We found that plasma uridine levels are regulated by fasting and refeeding in mice, rats, and humans. Fasting increases plasma uridine levels, and this increase relies largely on adipocytes. In contrast, refeeding reduces plasma uridine levels through biliary clearance. Elevation of plasma uridine is required for the drop in body temperature that occurs during fasting. Further, feeding-induced clearance of plasma uridine improves glucose metabolism. We also present findings that implicate leptin signaling in uridine homeostasis and consequent metabolic control and thermoregulation. Our results indicate that plasma uridine governs energy homeostasis and thermoregulation in a mechanism involving adipocyte-dependent uridine biosynthesis and leptin signaling.


Assuntos
Adipócitos/metabolismo , Regulação da Temperatura Corporal , Metabolismo Energético , Jejum/metabolismo , Eliminação Hepatobiliar , Uridina/biossíntese , Uridina/sangue , Animais , Glicemia/metabolismo , Humanos , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
15.
Mol Metab ; 5(7): 491-505, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27408775

RESUMO

OBJECTIVE: Characterize the cellular and molecular events responsible for lipodystrophy in AGPAT2 deficient mice. METHODS: Adipose tissue and differentiated MEF were assessed using light and electron microscopy, followed by protein (immunoblots) and mRNA analysis (qPCR). Phospholipid profiling was determined by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS: In contrast to adult Agpat2 (-/-) mice, fetuses and newborn Agpat2 (-/-) mice have normal mass of white and brown adipose tissue. Loss of both the adipose tissue depots occurs during the first week of postnatal life as a consequence of adipocyte death and inflammatory infiltration of the adipose tissue. At the ultrastructural level, adipose tissue of newborn Agpat2 (-/-) mice is virtually devoid of caveolae and has abnormal mitochondria and lipid droplets. Autophagic structures are also abundant. Consistent with these findings, differentiated Agpat2 (-/-) mouse embryonic fibroblasts (MEFs) also have impaired adipogenesis, characterized by a lower number of lipid-laden cells and ultrastructural abnormalities in lipid droplets, mitochondria and plasma membrane. Overexpression of PPARγ, the master regulator of adipogenesis, increased the number of Agpat2 (-/-) MEFs that differentiated into adipocyte-like cells but did not prevent morphological abnormalities and cell death. Furthermore, differentiated Agpat2 (-/-) MEFs have abnormal phospholipid compositions with 3-fold increased levels of phosphatidic acid. CONCLUSION: We conclude that lipodystrophy in Agpat2 (-/-) mice results from postnatal cell death of adipose tissue in association with acute local inflammation. It is possible that AGPAT2 deficient adipocytes have an altered lipid filling or a reduced capacity to adapt the massive lipid availability associated with postnatal feeding.

16.
Eur J Immunol ; 46(6): 1315-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27120716

RESUMO

Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis.


Assuntos
Tecido Adiposo/fisiologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Comunicação Celular , Suscetibilidade a Doenças , Helmintíase/imunologia , Helmintíase/metabolismo , Helmintíase/parasitologia , Helmintos/imunologia , Homeostase , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade , Imunomodulação , Transdução de Sinais
17.
Immunology ; 147(1): 55-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26451966

RESUMO

Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.


Assuntos
Células Dendríticas/metabolismo , Pulmão/metabolismo , Ativação Linfocitária , Receptores de IgG/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/patogenicidade , Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antivirais/farmacologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Palivizumab/farmacologia , Receptores de IgG/deficiência , Receptores de IgG/genética , Receptores de IgG/imunologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/imunologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia , Carga Viral , Replicação Viral
18.
Biochem Biophys Res Commun ; 467(1): 39-45, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26417690

RESUMO

AIMS: Mutations in 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) result in lipodystrophy, insulin resistance and diabetes. Autophagy is required for normal adipogenesis and adipose tissue development. The aim of this study was to determine whether impaired autophagy or excessive cell death underlie the adipogenic inability of Agpat2(-/-) mice preadipocytes. METHODS: Preadipocytes were isolated from interscapular brown adipose tissue (BAT) of Agpat2(-/-) and Agpat2(+/+) newborn mice and cultured/differentiated in vitro. Intracellular lipids were quantified by oil red O staining. Cell death was assessed by lactate dehydrogenase (LDH) activity. Apoptosis and autophagy regulatory factors were determined at the mRNA and protein level with Real-time PCR, immunoblot and immunofluorescence. RESULTS: Adipogenically induced Agpat2(-/-) preadipocytes had fewer lipid-loaded cells and lower levels of adipocyte markers than wild type preadipocytes. Before adipogenic differentiation, autophagy-related proteins (ATGs) ATG3, ATG5-ATG12 complex, ATG7 and LC3II were increased but autophagic flux was reduced, as suggested by increased p62 levels, in Agpat2(-/-) preadipocytes. Adipogenic induction increased LDH levels in the culture media in Agpat2(-/-) preadipocytes but no differences were observed in the activation of Caspase 3 or in markers of autophagic flux. CONCLUSIONS: AGPAT2 is required for in vitro adipogenesis of mouse preadipocytes. Autophagy defects or apoptosis are not involved in the adipogenic failure of Agpat2(-/-) preadipocytes.


Assuntos
Aciltransferases/deficiência , Adipócitos Marrons/citologia , Adipócitos Marrons/enzimologia , Adipogenia/fisiologia , Aciltransferases/genética , Adipogenia/genética , Animais , Apoptose , Autofagia , Diferenciação Celular , Células Cultivadas , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Células-Tronco/citologia , Células-Tronco/metabolismo
19.
Nat Commun ; 6: 7739, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26204127

RESUMO

Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output.


Assuntos
Vasos Sanguíneos/embriologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA2/metabolismo , Proteínas HMGB/fisiologia , Hemangioblastos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Animais , Feminino , Genes Reporter , Hematopoese , Camundongos , Gravidez , Receptor Notch1/metabolismo
20.
J Cell Physiol ; 229(11): 1673-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24615682

RESUMO

Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator Xa/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Fator X/farmacologia , Fator X/uso terapêutico , Fator Xa/uso terapêutico , Proteínas de Helminto/farmacologia , Proteínas de Helminto/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Receptor PAR-1/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA