Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Insect Sci ; 3: 1175138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469512

RESUMO

Popillia japonica, a priority pest for the EU, was first detected in Northern Italy in 2014. Since its discovery, the outbreak extended over an area of more than 16,000 square kilometers in Northern Italy and Southern Switzerland. In this review, we summarize the state-of-the-art of research conducted in Italy on both the spreading capacity and control measures of P. japonica. Chemical, physical, and biological control measures deployed since its detection are presented, by highlighting their strengths and weaknesses. An in-depth study of the ecosystems invaded by P. japonica disclosed the presence and pathogenicity of natural strains of entomopathogenic fungi and nematodes, some of which have shown to be particularly aggressive towards the larvae of this pest under laboratory conditions. The Plant Health authorities of the Lombardy and Piedmont regions, with the support of several research institutions, played a crucial role in the initial eradication attempt and subsequently in containing the spread of P. japonica. Control measures were performed in the infested area to suppress adult populations of P. japonica by installing several traps (e.g., for mass trapping, for auto-dissemination of the fungus Metarhizium anisopliae, and "attract & kill"). For larval control, the infested fields were treated with commercial strains of the entomopathogenic fungus M. anisopliae and nematode Heterorhabditis bacteriophora. Future studies will aim at integrating phenological and spread models developed with the most effective control measures, within an ecologically sustainable approach.

2.
Front Plant Sci ; 7: 1290, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625664

RESUMO

Sharka, caused by Plum Pox Virus (PPV), is by far the most important infectious disease of peach [P. persica (L.) Batsch] and other Prunus species. The progressive spread of the virus in many important growing areas throughout Europe poses serious issues to the economic sustainability of stone fruit crops, peach in particular. The adoption of internationally agreed-upon rules for diagnostic tests, strain-specific monitoring schemes and spatial-temporal modeling of virus spread, are all essential for a more effective sharka containment. The EU regulations on nursery activity should be modified based on the zone delimitation of PPV presence, limiting open-field production of propagation materials only to virus-free areas. Increasing the efficiency of preventive measures should be augmented by the short-term development of resistant cultivars. Putative sources of resistance/tolerance have been recently identified in peach germplasm, although the majority of novel resistant sources to PPV-M have been found in almond. However, the complexity of introgression from related-species imposes the search for alternative strategies. The use of genetic engineering, particularly RNA interference (RNAi)-based approaches, appears as one of the most promising perspectives to introduce a durable resistance to PPV in peach germplasm, notwithstanding the well-known difficulties of in vitro plant regeneration in this species. In this regard, rootstock transformation to induce RNAi-mediated systemic resistance would avoid the transformation of numerous commercial cultivars, and may alleviate consumer resistance to the use of GM plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA