Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Immunology ; 170(1): 1-12, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37067238

RESUMO

Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.


Assuntos
Colite , Células Caliciformes , Humanos , Sistema Imunitário , Imunidade nas Mucosas , Transporte Biológico
2.
Artigo em Inglês | MEDLINE | ID: mdl-33558367

RESUMO

Plant fitness is largely dependent on the root, the underground organ, which, besides its anchoring function, supplies the plant body with water and all nutrients necessary for growth and development. To exploit the soil effectively, roots must constantly integrate environmental signals and react through adjustment of growth and development. Important components of the root management strategy involve a rapid modulation of the root growth kinetics and growth direction, as well as an increase of the root system radius through formation of lateral roots (LRs). At the molecular level, such a fascinating growth and developmental flexibility of root organ requires regulatory networks that guarantee stability of the developmental program but also allows integration of various environmental inputs. The plant hormone auxin is one of the principal endogenous regulators of root system architecture by controlling primary root growth and formation of LR. In this review, we discuss recent progress in understanding molecular networks where auxin is one of the main players shaping the root system and acting as mediator between endogenous cues and environmental factors.


Assuntos
Ácidos Indolacéticos/isolamento & purificação , Organogênese Vegetal , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Redes Reguladoras de Genes , Raízes de Plantas/metabolismo
3.
Nucleic Acids Res ; 49(2): 1133-1151, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33406240

RESUMO

Alternative splicing generates multiple transcript and protein isoforms from a single gene and controls transcript intracellular localization and stability by coupling to mRNA export and nonsense-mediated mRNA decay (NMD). RNA interference (RNAi) is a potent mechanism to modulate gene expression. However, its interactions with alternative splicing are poorly understood. We used artificial microRNAs (amiRNAs, also termed shRNAmiR) to knockdown all splice variants of selected target genes in Arabidopsis thaliana. We found that splice variants, which vary by their protein-coding capacity, subcellular localization and sensitivity to NMD, are affected differentially by an amiRNA, although all of them contain the target site. Particular transcript isoforms escape amiRNA-mediated degradation due to their nuclear localization. The nuclear and NMD-sensitive isoforms mask RNAi action in alternatively spliced genes. Interestingly, Arabidopsis SPL genes, which undergo alternative splicing and are targets of miR156, are regulated in the same manner. Moreover, similar results were obtained in mammalian cells using siRNAs, indicating cross-kingdom conservation of these interactions among RNAi and splicing isoforms. Furthermore, we report that amiRNA can trigger artificial alternative splicing, thus expanding the RNAi functional repertoire. Our findings unveil novel interactions between different post-transcriptional processes in defining transcript fates and regulating gene expression.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Degradação do RNAm Mediada por Códon sem Sentido , Isoformas de Proteínas/genética , Interferência de RNA , Precursores de RNA/metabolismo , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/biossíntese , Éxons , Genes de Plantas , Células HeLa , Humanos , MicroRNAs/genética , Plantas Geneticamente Modificadas , Isoformas de Proteínas/biossíntese , Protoplastos/metabolismo , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA de Plantas/genética , Fatores de Processamento de Serina-Arginina/biossíntese , Fatores de Processamento de Serina-Arginina/genética , Transcrição Gênica , Transfecção
4.
Front Plant Sci ; 11: 586870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240303

RESUMO

Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.

5.
Nat Commun ; 11(1): 4285, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855390

RESUMO

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citocininas/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Citocininas/química , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Meristema/citologia , Meristema/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Nat Commun ; 11(1): 2170, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358503

RESUMO

Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Resistência à Doença/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/química , Parede Celular/metabolismo , Endossomos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Plasmodioforídeos/patogenicidade , Via Secretória/genética , Solo , Proteínas de Transporte Vesicular/metabolismo
7.
Front Plant Sci ; 10: 1680, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038671

RESUMO

The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-ß and FLM-δ are the most representative. While FLM-ß codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-ß and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-ß expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.

8.
Sci Rep ; 8(1): 8754, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884790

RESUMO

Light represents the principal signal driving circadian clock entrainment. However, how light influences the evolution of the clock remains poorly understood. The cavefish Phreatichthys andruzzii represents a fascinating model to explore how evolution under extreme aphotic conditions shapes the circadian clock, since in this species the clock is unresponsive to light. We have previously demonstrated that loss-of-function mutations targeting non-visual opsins contribute in part to this blind clock phenotype. Here, we have compared orthologs of two core clock genes that play a key role in photic entrainment, cry1a and per2, in both zebrafish and P. andruzzii. We encountered aberrantly spliced variants for the P. andruzzii per2 transcript. The most abundant transcript encodes a truncated protein lacking the C-terminal Cry binding domain and incorporating an intronic, transposon-derived coding sequence. We demonstrate that the transposon insertion leads to a predominantly cytoplasmic localization of the cavefish Per2 protein in contrast to the zebrafish ortholog which is distributed in both the nucleus and cytoplasm. Thus, it seems that during evolution in complete darkness, the photic entrainment pathway of the circadian clock has been subject to mutation at multiple levels, extending from opsin photoreceptors to nuclear effectors.


Assuntos
Cyprinidae/genética , Proteínas de Peixes/genética , Proteínas Circadianas Period/genética , Animais , Ritmo Circadiano , Criptocromos/genética , Cyprinidae/fisiologia , Evolução Molecular , Luz , Mutação , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
9.
Plant J ; 94(6): 1010-1022, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602264

RESUMO

The ability to adapt growth and development to temperature variations is crucial to generate plant varieties resilient to predicted temperature changes. However, the mechanisms underlying plant response to progressive increases in temperature have just started to be elucidated. Here, we report that the cyclin-dependent kinase G1 (CDKG1) is a central element in a thermo-sensitive mRNA splicing cascade that transduces changes in ambient temperature into differential expression of the fundamental spliceosome component, ATU2AF65A. CDKG1 is alternatively spliced in a temperature-dependent manner. We found that this process is partly dependent on both the cyclin-dependent kinase G2 (CDKG2) and the interacting co-factor CYCLIN L1 (CYCL1), resulting in two distinct messenger RNAs. The relative abundance of both CDKG1 transcripts correlates with ambient temperature and possibly with different expression levels of the associated protein isoforms. Both CDKG1 alternative transcripts are necessary to fully complement the expression of ATU2AF65A across the temperature range. Our data support a previously unidentified temperature-dependent mechanism based on the alternative splicing (AS) of CDKG1 and regulated by CDKG2 and CYCL1. We propose that changes in ambient temperature affect the relative abundance of CDKG1 transcripts, and this in turn translates into differential CDKG1 protein expression coordinating the AS of ATU2AF65A.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fatores de Processamento de RNA/metabolismo , Processamento Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fracionamento Celular , Regulação da Expressão Gênica de Plantas/genética , Fatores de Processamento de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Spliceossomos/metabolismo , Temperatura
10.
Hum Mol Genet ; 24(17): 4809-16, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26063760

RESUMO

Mutations affecting specific splicing regulatory elements offer suitable models to better understand their interplay and to devise therapeutic strategies. Here we characterize a meaningful splicing model in which numerous Hemophilia B-causing mutations, either missense or at the donor splice site (5'ss) of coagulation F9 exon 2, promote aberrant splicing by inducing the usage of a strong exonic cryptic 5'ss. Splicing assays with natural and artificial F9 variants indicated that the cryptic 5'ss is regulated, among a network of regulatory elements, by an exonic splicing silencer (ESS). This finding and the comparative analysis of the F9 sequence across species showing that the cryptic 5'ss is always paralleled by the conserved ESS support a compensatory mechanism aimed at minimizing unproductive splicing. To recover splicing we tested antisense oligoribonucleotides masking the cryptic 5'ss, which were effective on exonic changes but promoted exon 2 skipping in the presence of mutations at the authentic 5'ss. On the other hand, we observed a very poor correction effect by small nuclear RNA U1 (U1snRNA) variants with increased or perfect complementarity to the defective 5'ss, a strategy previously exploited to rescue splicing. Noticeably, the combination of the mutant-specific U1snRNAs with antisense oligonucleotides produced appreciable amounts of correctly spliced transcripts (from 0 to 20-40%) from several mutants of the exon 2 5'ss. Based on the evidence of an altered interplay among ESS, cryptic and the authentic 5'ss as a disease-causing mechanism, we provide novel experimental insights into the combinatorial correction activity of antisense molecules and compensatory U1snRNAs.


Assuntos
Fator IX/genética , Regulação da Expressão Gênica , Oligonucleotídeos Antissenso/genética , Sítios de Splice de RNA , RNA Nuclear Pequeno/genética , Processamento Alternativo , Animais , Sequência de Bases , Linhagem Celular , Éxons , Humanos , Íntrons , Mutação , Elementos Silenciadores Transcricionais
11.
Biochim Biophys Acta ; 1822(7): 1109-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22426302

RESUMO

Changes at the invariable donor splice site +1 guanine, relatively frequent in human genetic disease, are predicted to abrogate correct splicing, and thus are classified as null mutations. However, their ability to direct residual expression, which might have pathophysiological implications in several diseases, has been poorly investigated. As a model to address this issue, we studied the IVS6+1G>T mutation found in patients with severe deficiency of the protease triggering coagulation, factor VII (FVII), whose absence is considered lethal. In expression studies, the IVS6+1G>T induced exon 6 skipping and frame-shift, and prevented synthesis of correct FVII transcripts detectable by radioactive/fluorescent labelling or real-time RT-PCR. Intriguingly, the mutation induced the activation of a cryptic donor splice site in exon 6 and production of an in-frame 30bp deleted transcript (8 ± 2%). Expression of this cDNA variant, lacking 10 residues in the activation domain, resulted in secretion of trace amounts (0.2 ± 0.04%) of protein with appreciable specific activity (48 ± 16% of wt-FVII). Altogether these data indicate that the IVS6+1G>T mutation is compatible with the synthesis of functional FVII molecules (~0.01% of normal, 1pM), which could trigger coagulation. The low but detectable thrombin generation (352 ± 55nM) measured in plasma from an IVS6+1G>T homozygote was consistent with a minimal initiation of the enzymatic cascade. In conclusion, we provide experimental clues for traces of FVII expression, which might have reverted an otherwise perinatally lethal genetic condition.


Assuntos
Processamento Alternativo/genética , Deficiência do Fator VII/genética , Fator VII/genética , Mutação Puntual/genética , Sítios de Splice de RNA/genética , Coagulação Sanguínea/genética , Criança , DNA Complementar/genética , DNA Complementar/metabolismo , Éxons/genética , Fator VII/análise , Feminino , Mutação da Fase de Leitura/genética , Genes Letais , Homozigoto , Humanos , Masculino , Splicing de RNA/genética , Trombina/análise , Trombina/genética , Adulto Jovem
12.
Hum Mol Genet ; 21(11): 2389-98, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22362925

RESUMO

A significant proportion of disease-causing mutations affect precursor-mRNA splicing, inducing skipping of the exon from the mature transcript. Using F9 exon 5, CFTR exon 12 and SMN2 exon 7 models, we characterized natural mutations associated to exon skipping in Haemophilia B, cystic fibrosis and spinal muscular atrophy (SMA), respectively, and the therapeutic splicing rescue by using U1 small nuclear RNA (snRNA). In minigene expression systems, loading of U1 snRNA by complementarity to the normal or mutated donor splice sites (5'ss) corrected the exon skipping caused by mutations at the polypyrimidine tract of the acceptor splice site, at the consensus 5'ss or at exonic regulatory elements. To improve specificity and reduce potential off-target effects, we developed U1 snRNA variants targeting non-conserved intronic sequences downstream of the 5'ss. For each gene system, we identified an exon-specific U1 snRNA (ExSpeU1) able to rescue splicing impaired by the different types of mutations. Through splicing-competent cDNA constructs, we demonstrated that the ExSpeU1-mediated splicing correction of several F9 mutations results in complete restoration of secreted functional factor IX levels. Furthermore, two ExSpeU1s for SMA improved SMN exon 7 splicing in the chromosomal context of normal cells. We propose ExSpeU1s as a novel therapeutic strategy to correct, in several human disorders, different types of splicing mutations associated with defective exon definition.


Assuntos
Éxons , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Processamento Alternativo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Humanos , Íntrons , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA/fisiologia
13.
PLoS Biol ; 9(9): e1001142, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909239

RESUMO

The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Peixe-Zebra/fisiologia , Animais , Linhagem Celular , Comportamento Alimentar , Expressão Gênica , Opsinas/genética , Estimulação Luminosa , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
14.
Haematologica ; 95(8): 1429-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20418241

RESUMO

Chronic sleep loss, a common feature of human life in industrialized countries, is associated to cardiovascular disorders. Variations in functional parameters of coagulation might contribute to explain this relationship. By exploiting the mouse model and a specifically designed protocol, we demonstrated that seven days of partial sleep deprivation significantly decreases (-30.5%) the thrombin generation potential in plasma evaluated upon extrinsic (TF/FVIIa pathway) but not intrinsic activation of coagulation. This variation was consistent with a decrease (-49.8%) in the plasma activity levels of factor VII (FVII), the crucial physiologicalal trigger of coagulation, which was even more pronounced at the liver mRNA level (-85.7%). The recovery in normal sleep conditions for three days completely restored thrombin generation and FVII activity in plasma. For the first time, we demonstrate that chronic sleep deprivation on its own reduces, in a reversible manner, the FVII expression levels, thus influencing the TF/FVIIa activation pathway efficiency.


Assuntos
Fator VII/genética , Regulação da Expressão Gênica , Privação do Sono/sangue , Privação do Sono/fisiopatologia , Animais , Doença Crônica , Fator VII/metabolismo , Fator VIIa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Trombina/metabolismo , Tromboplastina/metabolismo , Fatores de Tempo , Redução de Peso/fisiologia
15.
Mol Cell Biol ; 28(9): 3070-5, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316400

RESUMO

The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock(-/-); Npas2(-/-) mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2(-/-) and Clock(Delta19/Delta19) mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Ritmo Circadiano/fisiologia , Fígado/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Transativadores/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas CLOCK , Proteínas de Ciclo Celular/metabolismo , Criptocromos , Elementos E-Box , Fator VII/genética , Fator VII/metabolismo , Flavoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , RNA Mensageiro/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
Blood ; 111(5): 2681-4, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18156490

RESUMO

Small nuclear U1-RNAs (snRNAs), the spliceosome components selectively recognizing donor splice sites (5'ss), were engineered to restore correct mRNA processing in a cellular model of severe coagulation factor VII (FVII) deficiency, caused by the IVS7 9726 + 5g/a change. Three U1-snRNAs, complementary to the mutated 5'ss (U1 + 5a) or to neighboring sequences were expressed with FVII minigenes in a hepatoma cell line. The U1-snRNAs reduced from 80% to 40% the exon 7 skipping, thus increasing exon definition. The U1 + 5a construct also dramatically increased recognition of the correct 5'ss over the 37-bp downstream cryptic site preferentially activated by the mutation, thus inducing appreciable synthesis of normal transcripts (from barely detectable to 50%). This effect, which was dose-dependent, clearly demonstrated that impaired recognition by the U1-snRNA was the mechanism responsible for FVII deficiency. These findings suggest compensatory U1-snRNAs as therapeutic tools in coagulation factor deficiencies caused by mutations at 5'ss, a frequent cause of severe defects.


Assuntos
Deficiência do Fator VII/genética , Processamento Pós-Transcricional do RNA/genética , RNA Nuclear Pequeno/genética , Animais , Sequência de Bases , Células COS , Linhagem Celular , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA