RESUMO
Cooperation among non-kin is well documented in humans and widespread in non-human animals, but explaining the occurrence of cooperation in the absence of inclusive fitness benefits has proven a significant challenge. Current theoretical explanations converge on a single point: cooperators can prevail when they cluster in social space. However, we know very little about the real-world mechanisms that drive such clustering, particularly in systems where cognitive limitations make it unlikely that mechanisms such as score keeping and reputation are at play. Here, we show that Trinidadian guppies (Poecilia reticulata) use a 'walk away' strategy, a simple social heuristic by which assortment by cooperativeness can come about among mobile agents. Guppies cooperate during predator inspection and we found that when experiencing defection in this context, individuals prefer to move to a new social environment, despite having no prior information about this new social group. Our results provide evidence in non-human animals that individuals use a simple social partner updating strategy in response to defection, supporting theoretical work applying heuristics to understanding the proximate mechanisms underpinning the evolution of cooperation among non-kin.