Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMJ Open Diabetes Res Care ; 12(3)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901857

RESUMO

INTRODUCTION: The overall aim of this study was to evaluate the implementation of sodium-glucose cotransporter 2 inhibitors (SGLT2i) among patients in tertiary care with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). RESEARCH DESIGN AND METHODS: The cross-sectional analysis was based on outpatients in tertiary diabetes care enrolled in the Swiss Diabetes Registry with T2DM and a study visit January 1, 2020-March 31, 2021. Prevalence of CKD was ascertained as an estimated glomerular filtration rate <60 mL/min/1.73 m2 and/or persistent albuminuria as defined by Kidney Disease Improving Global Outcomes, and the proportion of patients prescribed SGLT2i was determined. Documented reasons for non-treatment with SGLT2i were extracted by a retrospective review of the medical records. RESULTS: Of 368 patients with T2DM, 1.1% (n=4) were excluded due to missing data. Of the remaining 364 patients, 47.3% (n=172) had CKD of which 32.6% (n=56) were prescribed SGLT2i. The majority (75%) of these patients were on treatment already in 2018, before the renoprotective effects of SGLT2i were established. Among the 116 patients without SGLT2i, 19.0% had known contraindications, 9.5% stopped treatment due to adverse events, 5.2% had other reasons, and no underlying reason for non-treatment could be identified for 66.4%. CONCLUSIONS: A divergence between recommended standard of care and implementation in daily clinical practice was observed. Although treatment should always consider patient-specific circumstances, the results highlight the need to reinforce current treatment recommendations to ensure patients benefit from the best available care.


Assuntos
Diabetes Mellitus Tipo 2 , Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Atenção Terciária à Saúde , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/tratamento farmacológico , Estudos Transversais , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Suíça/epidemiologia , Sistema de Registros , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Prognóstico , Seguimentos
2.
Am J Physiol Endocrinol Metab ; 326(6): E819-E831, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630050

RESUMO

One-anastomosis gastric bypass (OAGB) has gained importance as a simple, safe, and effective operation to treat morbid obesity. We previously found that Roux-en-Y gastric bypass surgery with a long compared with a short biliopancreatic limb (BPL) leads to improved weight loss and glucose tolerance in obese mice. However, it is not known whether a long BPL in OAGB surgery also results in beneficial metabolic outcomes. Five-week-old male C57BL/6J mice fed a high-fat diet (HFD) for 8 weeks underwent OAGB surgery with defined BPL lengths (5.5 cm distally of the duodenojejunal junction for short and 9.5 cm for long BPL), or sham surgery combined with caloric restriction. Weight loss, glucose tolerance, obesity-related comorbidities, endocrine effects, gut microbiota, and bile acids were assessed. Total weight loss was independent of the length of the BPL after OAGB surgery. However, a long BPL was associated with lower glucose-stimulated insulin on day 14, and an improved glucose tolerance on day 35 after surgery. Moreover, a long BPL resulted in reduced total cholesterol, while there were no differences in the resolution of metabolic dysfunction-associated steatotic liver disease (MASLD) and adipose tissue inflammation. Tendencies of an attenuated hypothalamic-pituitary-adrenal (HPA) axis and aldosterone were present in the long BPL group. With both the short and long BPL, we found an increase in primary conjugated bile acids (pronounced in long BPL) along with a loss in bacterial Desulfovibrionaceae and Erysipelotrichaceae and simultaneous increase in Akkermansiaceae, Sutterellaceae, and Enterobacteriaceae. In summary, OAGB surgery with a long compared with a short BPL led to similar weight loss, but improved glucose metabolism, lipid, and endocrine outcomes in obese mice, potentially mediated through changes in gut microbiota and related bile acids. Tailoring the BPL length in humans might help to optimize metabolic outcomes after bariatric surgery.NEW & NOTEWORTHY Weight loss following OAGB surgery in obese mice was not influenced by BPL length, but a longer BPL was associated with improved metabolic outcomes, including glucose and lipid homeostasis. These changes could be mediated by bile acids upon altered gut microbiota. Further validation of these findings is required through a randomized human study.


Assuntos
Derivação Gástrica , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Redução de Peso , Animais , Masculino , Camundongos , Redução de Peso/fisiologia , Obesidade/cirurgia , Obesidade/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal/fisiologia , Anastomose Cirúrgica , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Ácidos e Sais Biliares/metabolismo
3.
J Clin Immunol ; 44(3): 63, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363399

RESUMO

Inflammatory bowel disease (IBD) occurring following allogeneic stem cell transplantation (aSCT) is a very rare condition. The underlying pathogenesis needs to be better defined. There is currently no systematic effort to exclude loss- or gain-of-function mutations in immune-related genes in stem cell donors. This is despite the fact that more than 100 inborn errors of immunity may cause or contribute to IBD. We have molecularly characterized a patient who developed fulminant inflammatory bowel disease following aSCT with stable 100% donor-derived hematopoiesis. A pathogenic c.A291G; p.I97M HAVCR2 mutation encoding the immune checkpoint protein TIM-3 was identified in the patient's blood-derived DNA, while being absent in DNA derived from the skin. TIM-3 expression was much decreased in the patient's serum, and in vitro-activated patient-derived T cells expressed reduced TIM-3 levels. In contrast, T cell-intrinsic CD25 expression and production of inflammatory cytokines were preserved. TIM-3 expression was barely detectable in the immune cells of the patient's intestinal mucosa, while being detected unambiguously in the inflamed and non-inflamed colon from unrelated individuals. In conclusion, we report the first case of acquired, "transplanted" insufficiency of the regulatory TIM-3 checkpoint linked to post-aSCT IBD.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Doenças Inflamatórias Intestinais , Transplante de Células-Tronco , Humanos , Citocinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/etiologia , Mucosa Intestinal , Transplante de Células-Tronco/efeitos adversos
4.
Diabetologia ; 66(12): 2292-2306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792013

RESUMO

AIMS/HYPOTHESIS: Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS: We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS: CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1ß+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1ß as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1ß prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION: Macrophages and macrophage-derived factors, such as IL-1ß, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY: The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Macrófagos/metabolismo , Glucose/metabolismo
5.
Part Fibre Toxicol ; 20(1): 25, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400850

RESUMO

BACKGROUND: We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants. METHODS: To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 µg five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways. RESULTS: Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2- anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1ß protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure. CONCLUSION: In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles.


Assuntos
Intolerância à Glucose , Emissões de Veículos , Camundongos , Animais , Emissões de Veículos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Intolerância à Glucose/induzido quimicamente , Inflamação , Imunidade Inata
6.
Lancet Diabetes Endocrinol ; 11(9): 675-693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524103

RESUMO

Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.


Assuntos
Doenças Metabólicas , Viroses , Humanos , Relevância Clínica , Viroses/complicações , Doenças Metabólicas/epidemiologia , Saúde Pública
7.
Part Fibre Toxicol ; 20(1): 7, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895000

RESUMO

BACKGROUND: Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS: To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS: Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS: We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Lipídeos
8.
EClinicalMedicine ; 53: 101649, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36128334

RESUMO

Background: Patients with type 2 diabetes and obesity have chronic activation of the innate immune system possibly contributing to the higher risk of hyperinflammatory response to SARS-CoV2 and severe COVID-19 observed in this population. We tested whether interleukin-1ß (IL-1ß) blockade using canakinumab improves clinical outcome. Methods: CanCovDia was a multicenter, randomised, double-blind, placebo-controlled trial to assess the efficacy of canakinumab plus standard-of-care compared with placebo plus standard-of-care in patients with type 2 diabetes and a BMI > 25 kg/m2 hospitalised with SARS-CoV2 infection in seven tertiary-hospitals in Switzerland. Patients were randomly assigned 1:1 to a single intravenous dose of canakinumab (body weight adapted dose of 450-750 mg) or placebo. Canakinumab and placebo were compared based on an unmatched win-ratio approach based on length of survival, ventilation, ICU stay and hospitalization at day 29. This study is registered with ClinicalTrials.gov, NCT04510493. Findings: Between October 17, 2020, and May 12, 2021, 116 patients were randomly assigned with 58 in each group. One participant dropped out in each group for the primary analysis. At the time of randomization, 85 patients (74·6 %) were treated with dexamethasone. The win-ratio of canakinumab vs placebo was 1·08 (95 % CI 0·69-1·69; p = 0·72). During four weeks, in the canakinumab vs placebo group 4 (7·0%) vs 7 (12·3%) participants died, 11 (20·0 %) vs 16 (28·1%) patients were on ICU, 12 (23·5 %) vs 11 (21·6%) were hospitalised for more than 3 weeks, respectively. Median ventilation time at four weeks in the canakinumab vs placebo group was 10 [IQR 6.0, 16.5] and 16 days [IQR 14.0, 23.0], respectively. There was no statistically significant difference in HbA1c after four weeks despite a lower number of anti-diabetes drug administered in patients treated with canakinumab. Finally, high-sensitive CRP and IL-6 was lowered by canakinumab. Serious adverse events were reported in 13 patients (11·4%) in each group. Interpretation: In patients with type 2 diabetes who were hospitalised with COVID-19, treatment with canakinumab in addition to standard-of-care did not result in a statistically significant improvement of the primary composite outcome. Patients treated with canakinumab required significantly less anti-diabetes drugs to achieve similar glycaemic control. Canakinumab was associated with a prolonged reduction of systemic inflammation. Funding: Swiss National Science Foundation grant #198415 and University of Basel. Novartis supplied study medication.

9.
Surg Obes Relat Dis ; 18(11): 1286-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995662

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) results in long-term weight loss and reduced obesity related co-morbidities. However, little is known about how the lengths of the biliopancreatic limb (BPL), the alimentary limb (AL), and the common limb (CL) affect weight loss and glucose metabolism. OBJECTIVES: Our aim was to establish a RYGB obese mouse model with defined proportions of the AL and BPL and a constant CL to assess the effects on weight loss,glucose metabolism, and obesity-related co-morbidities. SETTING: In vivo mouse study. METHODS: Six-week-old male C57BL/6J mice fed with a high-fat diet (HFD) underwent bariatric surgery with defined BPL lengths: a very long, long, and short BPL (35%, 25%, and 15% of total bowel length), or sham surgery. The length of the AL was adjusted to achieve the same CL length. Mice were analyzed for weight loss, glycemic control, and obesity-related co-morbidities. RESULTS: Mice undergoing RYGB surgery with a very long BPL had excessive weight loss and mortality and were therefore not further analyzed. Mice with a long BPL showed a significantly increased total weight loss when compared with mice with a short BPL. In addition, a long BPL improved glucose tolerance, particularly early after surgery. A long BPL was also associated with lower triglyceride levels. Resolution of hepatic steatosis and adipose tissue inflammation was, however, not statistically significant. Of note, bariatric surgery dramatically changed gut microbiota, regardless of limb length. CONCLUSION: In obese mice, a long BPL results in enhanced weight loss and improved glucose tolerance. These findings could potentially be translated to humans by tailoring the BPL length according to body weight, obesity-related co-morbidities, and total bowel length of an individual patient.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Masculino , Humanos , Camundongos , Animais , Derivação Gástrica/métodos , Camundongos Obesos , Obesidade Mórbida/cirurgia , Controle Glicêmico , Camundongos Endogâmicos C57BL , Redução de Peso , Obesidade/cirurgia , Glucose
10.
Horm Metab Res ; 54(8): 522-531, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35468630

RESUMO

Coronavirus disease 2019 (COVID-19) is characterized by a wide clinical spectrum that includes abnormalities in liver function indicative of liver damage. Conversely, people with liver diseases are at higher risk of severe COVID-19. In the current review, we summarize first the epidemiologic evidence describing the bidirectional relationship between COVID-19 and liver function/liver diseases. Additionally, we present the most frequent histologic findings as well as the most important direct and indirect mechanisms supporting a COVID-19 mediated liver injury. Furthermore, we focus on the most frequent liver disease in the general population, non-alcoholic or metabolic-associated fatty liver disease (NAFLD/MAFLD), and describe how COVID-19 may affect NAFLD/MAFLD development and progression and conversely how NAFLD/MAFLD may further aggravate a COVID-19 infection. Finally, we present the long-term consequences of the pandemic on the development and management of NAFLD.


Assuntos
COVID-19 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Pandemias , Fatores de Risco
11.
Commun Biol ; 5(1): 370, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440795

RESUMO

The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Animais , Glicemia/metabolismo , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Controle Glicêmico , Macrófagos/metabolismo , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Mucosal Immunol ; 15(3): 443-458, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264769

RESUMO

Goblet cells secrete mucin to create a protective mucus layer against invasive bacterial infection and are therefore essential for maintaining intestinal health. However, the molecular pathways that regulate goblet cell function remain largely unknown. Although GPR35 is highly expressed in colonic epithelial cells, its importance in promoting the epithelial barrier is unclear. In this study, we show that epithelial Gpr35 plays a critical role in goblet cell function. In mice, cell-type-specific deletion of Gpr35 in epithelial cells but not in macrophages results in goblet cell depletion and dysbiosis, rendering these animals more susceptible to Citrobacter rodentium infection. Mechanistically, scRNA-seq analysis indicates that signaling of epithelial Gpr35 is essential to maintain normal pyroptosis levels in goblet cells. Our work shows that the epithelial presence of Gpr35 is a critical element for the function of goblet cell-mediated symbiosis between host and microbiota.


Assuntos
Infecções por Enterobacteriaceae , Células Caliciformes , Animais , Citrobacter rodentium , Colo/microbiologia , Infecções por Enterobacteriaceae/metabolismo , Células Caliciformes/fisiologia , Mucosa Intestinal/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Front Immunol ; 12: 668654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054838

RESUMO

Chronic low-grade inflammation is a hallmark of obesity and associated with cardiovascular complications. However, it remains unclear where this inflammation starts. As the gut is constantly exposed to food, gut microbiota, and metabolites, we hypothesized that mucosal immunity triggers an innate inflammatory response in obesity. We characterized five distinct macrophage subpopulations (P1-P5) along the gastrointestinal tract and blood monocyte subpopulations (classical, non-classical, intermediate), which replenish intestinal macrophages, in non-obese (BMI<27kg/m2) and obese individuals (BMI>32kg/m2). To elucidate factors that potentially trigger gut inflammation, we correlated these subpopulations with cardiovascular risk factors and lifestyle behaviors. In obese individuals, we found higher pro-inflammatory macrophages in the stomach, duodenum, and colon. Intermediate blood monocytes were also increased in obesity, suggesting enhanced recruitment to the gut. We identified unhealthy lifestyle habits as potential triggers of gut and systemic inflammation (i.e., low vegetable intake, high processed meat consumption, sedentary lifestyle). Cardiovascular risk factors other than body weight did not affect the innate immune response. Thus, obesity in humans is characterized by gut inflammation as shown by accumulation of pro-inflammatory intestinal macrophages, potentially via recruited blood monocytes. Understanding gut innate immunity in human obesity might open up new targets for immune-modulatory treatments in metabolic disease.


Assuntos
Gastroenterite/imunologia , Imunidade Inata , Imunidade nas Mucosas , Intestinos/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Índice de Massa Corporal , Estudos de Casos e Controles , Dieta/efeitos adversos , Feminino , Gastroenterite/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Fenótipo , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Comportamento Sedentário
14.
Front Immunol ; 11: 1435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733476

RESUMO

Therapeutic corticosteroids have an immunosuppressive function involving several pathways, including lymphocytopenia and hypogammaglobulinemia. While these effects have been well-described in patients that received corticosteroids for therapeutic reasons, the effects of endogenous corticosteroids on the immune system are less well-understood. Here, we describe a 21-year old patient with hypercortisolism due to an ACTH producing thymic tumor. In this patient, we observed a decrease in some of the immunoglobulin classes, and in specific B and T cell populations that resembled effects caused by corticosteroid treatment. IgG levels were restored following treatment and normalization of the hypercortisolism.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Agamaglobulinemia/diagnóstico , Linfócitos B/fisiologia , Síndrome de Cushing/diagnóstico , Linfócitos T/fisiologia , Neoplasias do Timo/diagnóstico , Agamaglobulinemia/etiologia , Síndrome de Cushing/complicações , Humanos , Linfopenia , Masculino , Timectomia , Neoplasias do Timo/etiologia
15.
Obes Surg ; 30(9): 3561-3569, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500274

RESUMO

The evidence is strong that bariatric surgery is superior to medical treatment in terms of weight loss and comorbidities in patients with severe obesity. However, a considerable part of patients presents with unsatisfactory response in the long term. It remains unclear whether postoperative administration of glucagon-like peptide-1 analogues can promote additional benefits. Therefore, a systematic review of the current literature on the management of postoperative GLP-1 analogue usage after metabolic surgery was performed. From 4663 identified articles, 6 met the inclusion criteria, but only one was a randomized controlled trial. The papers reviewed revealed that GLP-1 analogues may have beneficial effects on additional weight loss and T2D remission postoperatively. Thus, the use of GLP-1 analogues in addition to surgery promises good results concerning weight loss and improvements of comorbidities and can be used in patients with unsatisfactory results after bariatric surgery.


Assuntos
Cirurgia Bariátrica , Terapias Complementares , Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon , Humanos , Obesidade Mórbida/cirurgia , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
J Clin Endocrinol Metab ; 104(10): 4703-4714, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087053

RESUMO

CONTEXT: Mammalian target of rapamycin complex 1 (mTORC1) activity is often increased in the adrenal cortex of patients with primary aldosteronism (PA), and mTORC1 inhibition decreases aldosterone production in adrenocortical cells, suggesting the mTORC1 pathway as a target for treatment of PA. OBJECTIVE: To investigate the effect of mTORC1 inhibition on adrenal steroid hormones and hemodynamic parameters in mice and in patients with PA. DESIGN: (i) Plasma aldosterone, corticosterone, and angiotensin II (Ang II) were measured in mice treated for 24 hours with vehicle or rapamycin. (ii) Plasma aldosterone levels after a saline infusion test, plasma renin, and 24-hour urine steroid hormone metabolome and hemodynamic parameters were measured during an open-label study in 12 patients with PA, before and after 2 weeks of treatment with everolimus and after a 2-week washout. MAIN OUTCOME MEASURES: (i) Change in plasma aldosterone levels. (ii) Change in other steroid hormones, renin, Ang II, and hemodynamic parameters. RESULTS: Treatment of mice with rapamycin significantly decreased plasma aldosterone levels (P = 0.007). Overall, treatment of PA patients with everolimus significantly decreased blood pressure (P < 0.05) and increased renin levels (P = 0.001) but did not decrease aldosterone levels significantly. However, prominent reduction of aldosterone levels upon everolimus treatment was observed in four patients. CONCLUSION: In mice, mTORC1 inhibition was associated with reduced plasma aldosterone levels. In patients with PA, mTORC1 inhibition was associated with improved blood pressure and renin suppression. In addition, mTORC1 inhibition appeared to reduce plasma aldosterone in a subset of patients.


Assuntos
Everolimo/uso terapêutico , Hiperaldosteronismo/tratamento farmacológico , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Sirolimo/uso terapêutico , Adulto , Aldosterona/sangue , Angiotensina II/sangue , Animais , Pressão Sanguínea/efeitos dos fármacos , Everolimo/farmacologia , Feminino , Hemodinâmica/efeitos dos fármacos , Humanos , Hiperaldosteronismo/sangue , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Projetos Piloto , Estudo de Prova de Conceito , Renina/sangue , Sirolimo/farmacologia
17.
Sci Rep ; 8(1): 15331, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333571

RESUMO

Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and anti-diabetic properties, and how this impacts on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene expression in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD.


Assuntos
Mesilato de Imatinib/farmacologia , Inflamação/prevenção & controle , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/metabolismo , Lipogênese/genética , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Mol Ther ; 24(5): 1003-12, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26686385

RESUMO

Interleukin-1ß (IL-1ß) is a key cytokine involved in inflammatory illnesses including rare hereditary diseases and common chronic inflammatory conditions as gout, rheumatoid arthritis, and type 2 diabetes mellitus, suggesting reduction of IL-1ß activity as new treatment strategy. The objective of our study was to assess safety, antibody response, and preliminary efficacy of a novel vaccine against IL-1ß. The vaccine hIL1bQb consisting of full-length, recombinant IL-1ß coupled to virus-like particles was tested in a preclinical and clinical, randomized, placebo-controlled, double-blind study in patients with type 2 diabetes. The preclinical simian study showed prompt induction of IL-1ß-specific antibodies upon vaccination, while neutralizing antibodies appeared with delay. In the clinical study with 48 type 2 diabetic patients, neutralizing IL-1ß-specific antibody responses were detectable after six injections with doses of 900 µg. The development of neutralizing antibodies was associated with higher number of study drug injections, lower baseline body mass index, improvement of glycemia, and C-reactive protein (CRP). The vaccine hIL1bQb was safe and well-tolerated with no differences regarding adverse events between patients receiving hIL1bQb compared to placebo. This is the first description of a vaccine against IL-1ß and represents a new treatment option for IL-1ß-dependent diseases such as type 2 diabetes mellitus (ClinicalTrials.gov NCT00924105).


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Diabetes Mellitus Tipo 2/terapia , Interleucina-1beta/imunologia , Vacinas/administração & dosagem , Adulto , Idoso , Animais , Diabetes Mellitus Tipo 2/imunologia , Método Duplo-Cego , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Vacinas/imunologia
19.
Diabetologia ; 59(3): 522-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26693711

RESUMO

AIMS/HYPOTHESIS: Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. METHODS: Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. RESULTS: We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue's response to clear the pancreas from insufficiently reprogrammed cells. CONCLUSIONS/INTERPRETATION: Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.


Assuntos
Reprogramação Celular/fisiologia , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Células Secretoras de Insulina/metabolismo , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/fisiopatologia , Animais , Técnicas In Vitro , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA