Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 59(6): 4068-4079, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32100542

RESUMO

This work demonstrates that PTA (1,3,5-triaza-7-phosphaadamantane) behaves as an orthogonal ligand between Ru(II) and Zn(II), since it selectively binds through the P atom to ruthenium and through one or more of the N atoms to zinc. This property of PTA was exploited for preparing the two monomeric porphyrin adducts with axially bound PTA, [Ru(TPP)(PTA-κP)2] (1, TPP = meso-tetraphenylporphyrin) and [Zn(TPP)(PTA-κN)] (3). Next, we prepared a number of heterobimetallic Ru/Zn porphyrin polymeric networks-and two discrete molecular systems-mediated by P,N-bridging PTA in which either both metals reside inside a porphyrin core, or one metal belongs to a porphyrin, either Ru(TPP) or Zn(TPP), and the other to a complex or salt of the complementary metal (i.e., cis,cis,trans-[RuCl2(CO)2(PTA-κP)2] (5), trans-[RuCl2(PTA-κP)4] (7), Zn(CH3COO)2, and ZnCl2). The molecular compounds 1, 3, trans-[{RuCl2(PTA-κ2P,N)4}{Zn(TPP)}4] (8), and [{Ru(TPP)(PTA-κP)(PTA-κ2P,N)}{ZnCl2(OH2)}] (11), as well as the polymeric species [{Ru(TPP)(PTA-κ2P,N)2}{Zn(TPP)}]∞ (4), cis,cis,trans-[{RuCl2(CO)2(PTA-κ2P,N)2}{Zn(TPP)}]∞ (6), trans-[{RuCl2(PTA-κ2P,N)4}{Zn(TPP)}2]∞ (9), and [{Ru(TPP)(PTA-κ3P,2N)2}{Zn9(CH3COO)16(CH3OH)2(OH)2}]∞ (10), were structurally characterized by single crystal X-ray diffraction. Compounds 4, 6, 9, and 10 are the first examples of solid-state porphyrin networks mediated by PTA. In 4, 6, 8, 9, and 11 the bridging PTA has the κ2P,N binding mode, whereas in the 2D polymeric layers of 10 it has the triple-bridging mode κ3P,2N. The large number of compounds with the six-coordinate Zn(TPP) (the three polymeric networks of 4, 6 and 9, out of five compounds) strongly suggests that the stereoelectronic features of PTA are particularly well-suited for this relatively rare type of coordination. Interestingly, the similar 1D polymeric chains 4 and 6 have different shapes (zigzag in 4 vs "Greek frame" in 6) because the {trans-Ru(PTA-κ2P,N)2} fragment bridges two Zn(TPP) units with anti geometry in 4 and with syn geometry in 6. Orthogonal "Greek frame" 1D chains make the polymeric network of 9. Having firmly established the binding preferences of PTA toward Ru(II) and Zn(II), we are confident that in the future a variety of Ru/Zn solid-state networks can be produced by changing the nature of the partners. In particular, there are several inert Ru(II) compounds that feature two or more P-bonded PTA ligands that might be exploited as connectors of well-defined geometry for the rational design of solid-state networks with Zn-porphyrins (or other Zn compounds).

2.
Dalton Trans ; 49(2): 453-465, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31833504

RESUMO

The ligand HCNNOMe (6-(4-methoxyphenyl)-2-aminomethylpyridine) is easily prepared from the commercially available 6-(4-methoxyphenyl)pyridine-2-carbaldehyde by the reaction of hydroxylamine and hydrogenation (H2, 1 atm) with Pd/C. The pincer complexes cis-[RuCl(CNNOMe)(PPh3)2] (1) and [RuCl(CNNOMe)(PP)] (PP = dppb, 2; and dppf, 3) are synthesized from [RuCl2(PPh3)3], HCNNOMe and PP (for 2 and 3) in 2-propanol with NEt3 at reflux and are isolated in 85-93% yield. Carbonylation of 1 (CO, 1 atm) gives [RuCl(CNNOMe)(CO)(PPh3)] (4) (79% yield) which cleanly reacts with Na[BArf4] and PCy3, affording the cationic trans-[Ru(CNNOMe)(CO)(PCy3)(PPh3)][BArf4] (5) (92% yield). These robust pincer complexes display remarkably high catalytic activity in the transfer hydrogenation (TH) of lignocellulosic biomass carbonyl compounds, using 2-propanol at reflux in a basic medium (NaOiPr or K2CO3). Thus, furfural, 5-(hydroxymethyl)furfural and Cyrene are reduced to the corresponding alcohols with 2 and 3, at S/C in the range of 10 000-100 000, within minutes or hours (TOF up to 1 500 000 h-1). The monocarbonyl complex 5 was found to be extremely active in the TH of cinnamaldehyde, vanillin derivatives and ethyl levulinate at S/C in the range of 10 000-50 000. Vanillyl alcohol is also obtained by the TH of vanillin with 5 (S/C = 500) in 2-propanol in the presence of K2CO3.

3.
Inorg Chem ; 58(7): 4399-4411, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864789

RESUMO

A series of four arrays made of a central Sn(IV) porphyrin as scaffold axially connected, via carboxylate functions, to two free-base porphyrins has been prepared and fully characterized. Three arrays in the series feature the same free-base unit and alternative tin-porphyrin macrocycles, and one consists of a second type of free-base and one chosen metallo-porphyrin. A thorough photophysical investigation has been performed on all arrays by means of time-resolved emission and absorption techniques. Specific focus has been given at identifying how structural modifications of the free-base and tin-porphyrin partners and/or variation of the solvent polarity can effectively translate into distinct photophysical behaviors. In particular, for systems SnTPP(Fb)2 (1) and SnOEP(Fb)2 (2), an ultrafast energy transfer process from the excited Sn(IV) porphyrin to the free-base unit occurs with unitary efficiency. For derivative SnTPP(FbR)2 (3), the change of solvent from dichloromethane to toluene is accompanied by a neat change in the intercomponent quenching mechanism, from photoinduced electron transfer to energy transfer, upon excitation of the Sn(IV) porphyrin unit. Finally, for array SnTpFP(Fb)2 (4), an ultrafast electron transfer quenching of both chromophores is detected in all solvents. This work provides a general outline, accompanied by clear experimental support, on possible ways to achieve a systematic fine-tuning of the quenching mechanism (from energy to electron transfer) of Sn(IV) multiporphyrin arrays.

4.
J Phys Chem A ; 121(22): 4242-4252, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28498660

RESUMO

A very efficient metal-mediated strategy led, in a single step, to a quantitative construction of a new three-component multichromophoric system containing one fullerene monoadduct, one aluminium(III) monopyridylporphyrin, and one ruthenium(II) tetraphenylporphyrin. The Al(III) monopyridylporphyrin component plays the pivotal role in directing the correct self-assembly process and behaves as the antenna unit for the photoinduced processes of interest. A detailed study of the photophysical behavior of the triad was carried out in different solvents (CH2Cl2, THF, and toluene) by stationary and time-resolved emission and absorption spectroscopy in the pico- and nanosecond time domains. Following excitation of the Al-porphyrin, the strong fluorescence typical of this unit was strongly quenched. The time-resolved absorption experiments provided evidence for the occurrence of stepwise photoinduced electron and hole transfer processes, leading to a charge-separated state with reduced fullerene acceptor and oxidized ruthenium porphyrin donor. The time constant values measured in CH2Cl2 for the formation of charge-separated state Ru-Al+-C60- (10 ps), the charge shift process (Ru-Al+-C60- → Ru+-Al-C60-), where a hole is transferred from Al-based to Ru-based unit (75 ps), and the charge recombination process to ground state (>5 ns), can be rationalized within the Marcus theory. Although the charge-separating performance of this triad is not outstanding, this study demonstrates that, using the self-assembling strategy, improvements can be obtained by appropriate chemical modifications of the individual molecular components.

5.
Inorg Chem ; 54(1): 280-92, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25523017

RESUMO

A new triad system featuring one zinc porphyrin and one fullerene moieties attached to a central redox-active Re(I) connector was obtained in remarkable yield by cleverly exploiting a facile two-step synthesis. Detailed description and discussion on the characterization of this multicomponent system and of its parent free-base analogue are presented, along with a kinetic study of the stepwise electron-transfer processes occurring upon visible excitation.


Assuntos
2,2'-Dipiridil/química , Complexos de Coordenação/química , Elétrons , Fulerenos/química , Metaloporfirinas/química , Rênio/química , Cátions Monovalentes , Complexos de Coordenação/síntese química , Transporte de Elétrons , Cinética , Luz , Espectroscopia de Ressonância Magnética , Oxirredução , Processos Fotoquímicos
6.
Inorg Chem ; 52(6): 3190-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23461643

RESUMO

We demonstrate here that, whereas the rhenium(I)-zinc porphyrin dyad fac-[Re(CO)3(bpy)(Zn·4'MPyP)](CF3SO3) [1; 4'MPyP = 5-(4'-pyridyl)-10,15,20-triphenylporphyrin] shows no evidence for photoinduced electron transfer upon excitation in the visible region because the charge-separated state ZnP(+)-Re(-) is almost isoenergetic with the singlet excited state of the zinc porphyrin (ΔG = -0.05 eV), the introduction of electron-withdrawing ethyl ester groups on the bpy ligand significantly improves the thermodynamics of the process (ΔG = -0.42 eV). As a consequence, in the new dyad fac-[Re(CO)3(4,4'-DEC-bpy)(Zn·4'MPyP)](CF3SO3) (4; 4,4'-DEC-bpy = 4,4'-diethoxycarbonyl-2,2'-bipyridine), an efficient and ultrafast intramolecular electron-transfer process occurs from the excited zinc porphyrin to the rhenium unit upon excitation with visible light. Conversely, the introduction of electron-donor tert-butyl groups on the meso-phenyl moieties of the zinc porphyrin has a negligible effect on the photophysics of the system. For dyad 4, the time constants for the charge-separation and charge-recombination processes in solvents of different polarity (PrCN, DCM, and toluene) were measured by an ultrafast time-resolved absorption technique (λ(exc) = 560 nm).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA