Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830629

RESUMO

The proximal caudal vertebrae and notochord in thick-toed geckos (TG) (Chondrodactylus turneri, Gray, 1864) were investigated after a 30-day space flight onboard the biosatellite Bion-M1. This region has not been explored in previous studies. Our research focused on finding sites most affected by demineralization caused by microgravity (G0). We used X-ray phase-contrast tomography to study TG samples without invasive prior preparation to clarify our previous findings on the resistance of TG's bones to demineralization in G0. The results of the present study confirmed that geckos are capable of preserving bone mass after flight, as neither cortical nor trabecular bone volume fraction showed statistically significant changes after flight. On the other hand, we observed a clear decrease in the mineralization of the notochordal septum and a substantial rise in intercentrum volume following the flight. To monitor TG's mineral metabolism in G0, we propose to measure the volume of mineralized tissue in the notochordal septum. This technique holds promise as a sensitive approach to track the demineralization process in G0, given that the volume of calcification within the septum is limited, making it easy to detect even slight changes in mineral content.


Assuntos
Lagartos , Voo Espacial , Animais , Microtomografia por Raio-X , Cóccix , Raios X , Minerais
3.
Front Mol Biosci ; 10: 1130183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006625

RESUMO

Skeletal muscle is a highly adaptive organ that sustains continuous metabolic changes in response to different functional demands. Healthy skeletal muscle can adjust fuel utilization to the intensity of muscle activity, the availability of nutrients and the intrinsic characteristics of muscle fibers. This property is defined as metabolic flexibility. Importantly, impaired metabolic flexibility has been associated with, and likely contributes to the onset and progression of numerous pathologies, including sarcopenia and type 2 diabetes. Numerous studies involving genetic and pharmacological manipulations of histone deacetylases (HDACs) in vitro and in vivo have elucidated their multiple functions in regulating adult skeletal muscle metabolism and adaptation. Here, we briefly review HDAC classification and skeletal muscle metabolism in physiological conditions and upon metabolic stimuli. We then discuss HDAC functions in regulating skeletal muscle metabolism at baseline and following exercise. Finally, we give an overview of the literature regarding the activity of HDACs in skeletal muscle aging and their potential as therapeutic targets for the treatment of insulin resistance.

4.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901738

RESUMO

Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.


Assuntos
Histona Desacetilases , Distrofia Muscular de Duchenne , Humanos , Histona Desacetilases/metabolismo , Distrofia Muscular de Duchenne/genética , Carbamatos/farmacologia , Músculo Esquelético/metabolismo , Inibidores de Histona Desacetilases/farmacologia
5.
J Gerontol A Biol Sci Med Sci ; 78(9): 1558-1560, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36966358

RESUMO

In this work, we report preliminary results about the involution of the human pineal gland involution. The detailed analysis of pineal structure was done on autopsy material of 77 persons in age 27-96 using x-ray phase-contrast tomography, histology, and immunohistochemistry. Our study suggests that the pineal gland alteration in older adults may be more profound than has been reported to date. We identified and described a new form of pineal gland involution that eventually led to the total degradation of the pineal gland. To our knowledge, this study is the first to report on the complete replacement of pineal gland parenchyma with connective tissue in older adults.


Assuntos
Cistos , Glândula Pineal , Humanos , Idoso , Idoso de 80 Anos ou mais , Glândula Pineal/diagnóstico por imagem , Glândula Pineal/patologia , Cistos/patologia , Imuno-Histoquímica , Autopsia
6.
Med Phys ; 50(3): 1601-1613, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36309985

RESUMO

BACKGROUND: The formation of concrements in human pineal gland (PG) is a physiological process and, according to many researchers, is associated with the involution of PG structures. The majority of scientific publications concern progressive calcification of PG, leaving out studies on the destruction of already formed calcified concrements. Our study fills the gap in knowledge about calcified zones destruction in PG in normal aging and neuropathological conditions, which has not been addressed until now. PURPOSE: Our objective is to gain insight into human PG tissue impairment in both normal aging and neurodegenerative conditions. X-ray phase-contrast tomography (XPCT) allowed us to study PG tissue degeneration at high spatial resolution and, for the first time, to examine the damaged PG concrements in detail. Our research finding could potentially enhance the understanding of the PG involvement in the process of aging as well as in Alzheimer's disease (AD) and vascular dementia (VD). METHODS: The research was carried out on human PG autopsy material in normal aging, VD, and AD conditions. Laboratory-based micro-computed tomography (micro-CT) was used to collect and evaluate samples of native, uncut, and unstained PG with different degrees of pineal calcification. The detailed high-resolution 3D images of the selected PGs were produced using synchrotron-based XPCT. Histology and immunohistochemistry of soft PG tissue confirmed XPCT results. RESULTS: We performed via micro-CT the evaluation of the morphometric parameters of PG such as total sample volume, calcified concrements volume, and percentage of concrements in the total volume of the sample. XPCT imaging revealed high-resolution details of age-related PG alteration. In particular, we noted signs of moderate degradation of concrements in some PGs from elderly donors. In addition, our analysis revealed noticeable degenerative change in both concrements and soft tissue of PGs with neuropathology. In particular, we observed a hollow core and separated layers as well as deep ragged cracks in PG concrements of AD and VD samples. In parenchyma of some samples, we detected wide pinealocyte-free fluid-filled areas adjacent to the calcified zones. CONCLUSION: The present work provides the basis for future scientific research focused on the dynamic nature of PG calcium deposits and PG soft tissue in normal aging and neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Calcinose , Doenças Neurodegenerativas , Glândula Pineal , Humanos , Idoso , Glândula Pineal/diagnóstico por imagem , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Microtomografia por Raio-X , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia
7.
J Neurotrauma ; 40(9-10): 939-951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36074949

RESUMO

Following spinal cord injury (SCI) the degree of functional (motor, autonomous, or sensory) loss correlates with the severity of nervous tissue damage. An imaging technique able to capture non-invasively and simultaneously the complex mechanisms of neuronal loss, vascular damage, and peri-lesional tissue reorganization is currently lacking in experimental SCI studies. Synchrotron X-ray phase-contrast tomography (SXPCT) has emerged as a non-destructive three-dimensional (3D) neuroimaging technique with high contrast and spatial resolution. In this framework, we developed a multi-modal approach combining SXPCT, histology and correlative methods to study neurovascular architecture in normal and spinal level C4-contused mouse spinal cords (C57BL/6J mice, age 2-3 months). The evolution of SCI lesion was imaged at the cell resolution level during the acute (30 min) and subacute (7 day) phases. Spared motor neurons (MNs) were segmented and quantified in different volumes localized at and away from the epicenter. SXPCT was able to capture neuronal loss and blood-brain barrier breakdown following SCI. Three-dimensional quantification based on SXPCT acquisitions showed no additional MN loss between 30 min and 7 days post-SCI. In addition, the analysis of hemorrhagic (at 30 min) and lesion (at 7 days) volumes revealed a high similarity in size, suggesting no extension of tissue degeneration between early and later time-points. Moreover, glial scar borders were unevenly distributed, with rostral edges being the most extended. In conclusion, SXPCT capability to image at high resolution cellular changes in 3D enables the understanding of the relationship between hemorrhagic events and nervous structure damage in SCI.


Assuntos
Traumatismos da Medula Espinal , Camundongos , Animais , Raios X , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Tomografia
8.
Metabolites ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422289

RESUMO

Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.

9.
Tomography ; 8(4): 1854-1868, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35894021

RESUMO

The human olfactory bulb (OB) has a laminar structure. The segregation of cell populations in the OB image poses a significant challenge because of indistinct boundaries of the layers. Standard 3D visualization tools usually have a low resolution and cannot provide the high accuracy required for morphometric analysis. X-ray phase contrast tomography (XPCT) offers sufficient resolution and contrast to identify single cells in large volumes of the brain. The numerous microanatomical structures detectable in XPCT image of the OB, however, greatly complicate the manual delineation of OB neuronal cell layers. To address the challenging problem of fully automated segmentation of XPCT images of human OB morphological layers, we propose a new pipeline for tomographic data processing. Convolutional neural networks (CNN) were used to segment XPCT image of native unstained human OB. Virtual segmentation of the whole OB and an accurate delineation of each layer in a healthy non-demented OB is mandatory as the first step for assessing OB morphological changes in smell impairment research. In this framework, we proposed an effective tool that could help to shed light on OB layer-specific degeneration in patients with olfactory disorder.


Assuntos
Aprendizado Profundo , Bulbo Olfatório , Humanos , Redes Neurais de Computação , Bulbo Olfatório/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Raios X
10.
Front Neurol ; 13: 910054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837233

RESUMO

Frontotemporal dementia (FTD) is a spectrum of clinical syndromes that affects personality, behavior, language, and cognition. The current diagnostic criteria recognize three main clinical subtypes: the behavioral variant of FTD (bvFTD), the semantic variant of primary progressive aphasia (svPPA), and the non-fluent/agrammatic variant of PPA (nfvPPA). Patients with FTD display heterogeneous clinical and neuropsychological features that highly overlap with those presented by psychiatric syndromes and other types of dementia. Moreover, up to now there are no reliable disease biomarkers, which makes the diagnosis of FTD particularly challenging. To overcome this issue, different studies have adopted metrics derived from magnetic resonance imaging (MRI) to characterize structural and functional brain abnormalities. Within this field, a growing body of scientific literature has shown that graph theory analysis applied to MRI data displays unique potentialities in unveiling brain network abnormalities of FTD subtypes. Here, we provide a critical overview of studies that adopted graph theory to examine the topological changes of large-scale brain networks in FTD. Moreover, we also discuss the possible role of information arising from brain network organization in the diagnostic algorithm of FTD-spectrum disorders and in investigating the neural correlates of clinical symptoms and cognitive deficits experienced by patients.

11.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613534

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a devastating adult-onset neurodegenerative disease, with ineffective therapeutic options. ALS incidence and prevalence depend on the sex of the patient. Histone deacetylase 4 (HDAC4) expression in skeletal muscle directly correlates with the progression of ALS, pointing to the use of HDAC4 inhibitors for its treatment. Contrarily, we have found that deletion of HDAC4 in skeletal muscle worsened the pathological features of ALS, accelerating and exacerbating skeletal muscle loss and negatively affecting muscle innervations in male SOD1-G93A (SOD1) mice. In the present work, we compared SOD1 mice of both sexes with the aim to characterize ALS onset and progression as a function of sex differences. We found a global sex-dependent effects on disease onset and mouse lifespan. We further investigated the role of HDAC4 in SOD1 females with a genetic approach, and discovered morpho-functional effects on skeletal muscle, even in the early phase of the diseases. The deletion of HDAC4 decreased muscle function and exacerbated muscle atrophy in SOD1 females, and had an even more dramatic effect in males. Therefore, the two sexes must be considered separately when studying ALS.


Assuntos
Esclerose Lateral Amiotrófica , Histona Desacetilases , Doenças Neurodegenerativas , Fatores Sexuais , Animais , Feminino , Masculino , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Histona Desacetilases/genética , Camundongos Transgênicos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
12.
Brain Imaging Behav ; 16(3): 1113-1122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34755293

RESUMO

Semantic (svPPA) and nonfluent (nfvPPA) variants of primary progressive aphasia (PPA) have recently been associated with distinct patterns of white matter and functional network alterations in left frontoinsular and anterior temporal regions, respectively. Little information exists, however, about the topological characteristics of gray matter covariance networks in these two PPA variants. In the present study, we used a graph theory approach to describe the structural covariance network organization in 34 patients with svPPA, 34 patients with nfvPPA and 110 healthy controls. All participants underwent a 3 T structural MRI. Next, we used cortical thickness values and subcortical volumes to define subject-specific connectivity networks. Patients with svPPA and nfvPPA were characterized by higher values of normalized characteristic path length compared with controls. Moreover, svPPA patients had lower values of normalized clustering coefficient relative to healthy controls. At a regional level, patients with svPPA showed a reduced connectivity and impaired information processing in temporal and limbic brain areas relative to controls and nfvPPA patients. By contrast, local network changes in patients with nfvPPA were focused on frontal brain regions such as the pars opercularis and the middle frontal cortex. Of note, a predominance of local metric changes was observed in the left hemisphere in both nfvPPA and svPPA brain networks. Taken together, these findings provide new evidences of a suboptimal topological organization of the structural covariance networks in svPPA and nfvPPA patients. Moreover, we further confirm that distinct patterns of structural network alterations are related to neurodegenerative mechanisms underlying each PPA variant.


Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Afasia Primária Progressiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Semântica
13.
Front Physiol ; 12: 752893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950047

RESUMO

The Mongolian gerbil displays unique physiological and anatomical features that make this species an attractive object for biological experiments in space. However, until recently, the Mongolian gerbil has remained a novel, mostly unstudied animal model in investigating bone loss in weightlessness (G0). After 12 days of orbital Foton-M3 mission, the humerus of Mongolian gerbils has been studied here via micro-computed tomography (micro-CT) to quantify bone morphometric parameters. The samples from the flight group, delayed synchronous ground-control group, and basal control group were investigated, and main morphometric parameters were reported in the article. The accurate selection of a region of interest is an essential step for a correct assessment of bone parameters. We proposed a new, easy and efficient method for delimiting the bone's basic regions in the humerus. It is based on quantitative estimation of X-ray attenuation in the cortical bone as a function of humerus bone length. The micro-CT analysis of the basic bone regions revealed a difference in bone morphometric parameters between the flight and control gerbils. The most significant bone loss was observed in the cortical part of the proximal humeral zone in the flight group. No statistically significant changes of volume fraction in the cancellous tissue of proximal and distal epiphyses and metaphyses were observed. A statistically significant increase in both cancellous bone volume and bone X-ray attenuation in the flight group was detected in the proximal part of the diaphyses. We assume that enhanced calcium deposition in the diaphyseal cancellous tissue occurred due to a bone response to G0 conditions.

14.
Metabolites ; 11(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436458

RESUMO

Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.

15.
Front Immunol ; 12: 655212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084164

RESUMO

Monomethyl fumarate (MMF), metabolite of dimethyl fumarate (DMF), an immunosuppressive drug approved for the treatment of multiple sclerosis (MS), is a potent agonist for hydroxycarboxylic acid receptor 2 (HCAR2), eliciting signals that dampen cell activation or lead to inflammation such as the skin flushing reaction that is one of the main side effects of the treatment, together with gastrointestinal inflammation. Our aim is to further understand the molecular basis underlying these differential effects of the drug. We have used wild-type and HCAR2 knock-out mice to investigate, in vitro and ex vivo under steady-state and pathological conditions, the HCAR2-mediated signaling pathways activated by MMF in dendritic cells (DC), which promote differentiation of T cells, and in intestinal epithelial cells (IEC) where activation of a pro-inflammatory pathway, such as the cyclooxygenase-2 pathway involved in skin flushing, could underlie gastrointestinal side effects of the drug. To understand how DMF treatment might impact on gut inflammation induced by experimental autoimmune encephalomyelitis (EAE), the animal model for MS, we have used 3D X-ray phase contrast tomography and flow cytometry to monitor possible intestinal alterations at morphological and immunological levels, respectively. We show that HCAR2 is a pleiotropically linked receptor for MMF, mediating activation of different pathways leading to different outcomes in different cell types, depending on experimental in-vitro and in-vivo conditions. In the small intestine of EAE-affected mice, DMF treatment affected migration of tolerogenic DC from lamina propria to mesenteric lymph nodes, and/or reverted their profile to pro-inflammatory, probably as a result of reduced expression of aldehyde dehydrogenase and transforming growth factor beta as well as the inflammatory environment. Nevertheless, DMF treatment did not amplify the morphological alterations induced by EAE. On the basis of our further understanding of MMF signaling through HCAR2, we suggest that the pleiotropic signaling of fumarate via HCAR2 should be addressed for its pharmaceutical relevance in devising new lead compounds with reduced inflammatory side effects.


Assuntos
Fumaratos/farmacologia , Imunossupressores/farmacologia , Esclerose Múltipla/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Biomarcadores , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Imuno-Histoquímica , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
16.
Front Oncol ; 11: 554668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113554

RESUMO

Characterizing nanoparticles (NPs) distribution in multiple and complex metastases is of fundamental relevance for the development of radiological protocols based on NPs administration. In the literature, there have been advances in monitoring NPs in tissues. However, the lack of 3D information is still an issue. X-ray phase-contrast tomography (XPCT) is a 3D label-free, non-invasive and multi-scale approach allowing imaging anatomical details with high spatial and contrast resolutions. Here an XPCT qualitative study on NPs distribution in a mouse brain model of melanoma metastases injected with gadolinium-based NPs for theranostics is presented. For the first time, XPCT images show the NPs uptake at micrometer resolution over the full brain. Our results revealed a heterogeneous distribution of the NPs inside the melanoma metastases, bridging the gap in spatial resolution between magnetic resonance imaging and histology. Our findings demonstrated that XPCT is a reliable technique for NPs detection and can be considered as an emerging method for the study of NPs distribution in organs.

17.
Sci Rep ; 11(1): 10608, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012032

RESUMO

The number of the Asbestos Bodies (AB), i.e. asbestos that developed an iron-protein coating during its permanence in biological tissues, is one of the most accessible markers of asbestos exposure in individuals. The approaches developed to perform AB count in biological tissues are based on the manual examination of tissue digests or histological sections by means of light or electron microscopies. Although these approaches are well established and relatively accessible, manual examination is time-consuming and can be reader-dependent. Besides, approximations are applied because of the limitations of 2D readings and to speed up manual counts. In addition, sample preparation using tissue digests require an amount of tissue that can only be obtained by invasive surgery or post-mortem sampling. In this paper, we propose a new approach to AB counting based on non-destructive 3D imaging, which has the potential to overcome most of the limitations of conventional approaches. This method allows automating the AB count and determining their morphometry distribution in bulk tissue samples (ideally non-invasive needle biopsies), with minimal sample preparation and avoiding approximations. Although the results are promising, additional testing on a larger number of AB-containing biological samples would be required to fully validate the method.


Assuntos
Amianto/efeitos adversos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento Tridimensional , Masculino , Microtomografia por Raio-X
18.
Toxicol Lett ; 348: 18-27, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023437

RESUMO

In the lungs, asbestos develops an Fe-rich coating (Asbestos Body, AB) that becomes the actual interface between the foreign fibers and the host organism. Conventional approaches to study ABs require an invasive sample preparation that can alter them. In this work, a novel combination of x-ray tomography and spectroscopy allowed studying unaltered lung tissue samples with chrysotile and crocidolite asbestos. The thickness and mass density maps of the ABs obtained by x-ray tomography were used to derive a truly quantitative elemental analysis from scanning x-ray fluorescence spectroscopy data. The average mass density of the ABs is compatible with that of highly loaded ferritin, or hemosiderin. The composition of all ABs analyzed was similar, with only minor differences in the relative elemental fractions. Silicon concentration decreased in the core-to-rim direction, indicating a possible partial dissolution of the inner fiber. The Fe content in the ABs was higher than that possibly contained in chrysotile and crocidolite. This finding opens two opposite scenarios, the first with Fe coming from the fiber bulk and concentrating on the surface as long as the fiber dissolves, the second where the Fe that takes part to the formation of the AB originates from the host organism Fe-pool.


Assuntos
Amianto/química , Asbestose/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Espectrometria de Fluorescência/métodos , Tomografia por Raios X/métodos , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
20.
Brain Sci ; 11(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557411

RESUMO

Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that personality changes and executive dysfunctions are accompanied by a disease-specific anatomical pattern of cortical and subcortical atrophy. We investigated the structural topological network changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-subject anatomical connectivity and investigate network organization using a graph theory approach. Relative to controls, bvFTD patients showed altered small-world properties and decreased global efficiency, suggesting a reduced ability to combine specialized information from distributed brain regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE) scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural brain networks of bvFTD patients, providing new insights on the association between cognitive decline and graph properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA