Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 196: 48-55, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29307525

RESUMO

AIMS: The sperm plasma membrane contains specific ion channels and transporters that initiate changes in Ca2+, Na+, K+ and H+ ions in the sperm cytoplasm. Ion channels are key regulators of the sperm membrane potential, cytoplasmic Ca2+ and intracellular pH (pHi), which leads to regulate motility, capacitation, acrosome reaction and other physiological processes crucial for successful fertilization. Expression of epithelial sodium channels (ENaC) and voltage-gated sodium channels (Nav) in human spermatozoa has been reported, but the role of Na+ fluxes sodium channels in the regulation of sperm cell function remains poorly understood. In this context, we aimed to analyze the physiological role of Nav channels in human sperm. MAIN METHODS: Motility and hyperactivation analysis was conducted by CASA analysis. Flow cytometry and spectrophotometry approaches were carried out to measure Capacitation, Acrosome reaction, immunohistochemistry for Tyr-residues phosporylation, [Ca2+]i levels and membrane potential. KEY FINDINGS: Functional studies showed that veratridine, a voltage-gated sodium channel activator, increased sperm progressive motility without producing hyperactivation while the Nav antagonist lidocaine did induce hyperactivated motility. Veratridine increased protein tyrosine phosphorylation, an event occurring during capacitation, and its effects were inhibited in the presence of lidocaine and tetrodotoxin. Veratridine had no effect on the acrosome reaction by itself, but was able to block the progesterone-induced acrosome reaction. Moreover, veratridine caused a membrane depolarization and modified the effect of progesterone on [Ca2+]i and sperm membrane potential. SIGNIFICANCE: Our results suggest that veratridine-sensitive Nav channels are involved on human sperm fertility acquisition regulating motility, capacitation and the progesterone-induced acrosome reaction in human sperm.


Assuntos
Fertilização/efeitos dos fármacos , Agonistas de Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Veratridina/farmacologia , Reação Acrossômica/efeitos dos fármacos , Adolescente , Adulto , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Lidocaína/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Progesterona/antagonistas & inibidores , Progesterona/farmacologia , Receptores Androgênicos/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Adulto Jovem
2.
Hum Reprod ; 29(12): 2736-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25316443

RESUMO

STUDY QUESTION: Are neurokinin B (NKB), NK3 receptor (NK3R), kisspeptin (KISS1) and kisspeptin receptor (KISS1R) expressed in human ovarian granulosa cells? SUMMARY ANSWER: The NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and functionally active in ovarian granulosa cells. WHAT IS KNOWN ALREADY: The NKB/NK3R and KISS1/KISS1R systems are essential for reproduction. In addition to their well-recognized role in hypothalamic neurons, these peptide systems may contribute to the control of fertility by acting directly on the gonads, but such a direct gonadal role remains largely unknown. STUDY DESIGN, SIZE, DURATION: This study analyzed matched mural granulosa cells (MGCs) and cumulus cells (CCs) collected from preovulatory follicles of oocyte donors at the time of oocyte retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS: The samples were provided by 56 oocyte donor women undergoing ovarian stimulation treatment. Follicular fluid samples containing MGCs and cumulus-oocyte complexes were collected after transvaginal ultrasound-guided oocyte retrieval. RT-PCR, quantitative real-time PCR, immunocytochemistry and western blot were used to investigate the pattern of expression of the NKB/NK3R and KISS/KISS1R systems in MGCs and CCs. Intracellular free Ca(2+) levels, [Ca(2+)]i, in MGCs after exposure to NKB or KISS1, in the presence or not of tachykinin receptor antagonists, were also measured. MAIN OUTCOME AND THE ROLE OF CHANCE: NKB/NK3R and KISS1/KISS1R systems were expressed, at the mRNA and protein levels, in MGCs and CCs, with significantly higher expression in CCs. Kisspeptin increased the [Ca(2+)]i in the cytosol of human MGCs while exposure to NKB failed to induce any change in [Ca(2+)]i. However, the [Ca(2+)]i response to kisspeptin was reduced in the presence of NKB. The inhibitory effect of NKB was only partially mimicked by the NK3R agonist, senktide and marginally suppressed by the NK3R-selective antagonist SB 222200. Yet, a cocktail of antagonists selective for the NK1, NK2 and NK3 receptors blocked the effect of NKB. LIMITATIONS, REASONS FOR CAUTION: The granulosa and cumulus cells were obtained from oocyte donors undergoing ovarian stimulation, which in comparison with natural cycles, may have affected gene and protein expression in granulosa cells. WIDER IMPLICATIONS OF THE FINDINGS: Our data demonstrate that, in addition to their indispensable effects at the central nervous system, the NKB/NK3R and kisspeptin/KISS1R systems are co-expressed and are functionally active in non-neuronal reproductive cells of the female gonads, the ovarian granulosa cells. STUDY FUNDING/ COMPETING INTERESTS: This work was supported by grants from Ministerio de Economía y Competitividad (CTQ2011-25564 and BFI2011-25021) and Junta de Andalucía (P08-CVI-04185), Spain. J.G.-O., F.M.P., M.F.-S., N.P., A.C.-R., T.A.A., M.H., M.R., M.T.-S. and L.C. have nothing to declare.


Assuntos
Células da Granulosa/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Receptores de Taquicininas/metabolismo , Células Cultivadas , Feminino , Humanos , Kisspeptinas/genética , Neurocinina B/genética , RNA Mensageiro/metabolismo , Receptores de Taquicininas/genética
3.
Int J Androl ; 35(1): 63-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21651574

RESUMO

Kisspeptin, the product of the KISS1 gene, plays an essential role in the regulation of spermatogenesis acting primarily at the hypothalamic level of the gonadotropic axis. However, the presence of kisspeptin and its canonical receptor, KISS1R, in spermatozoa has not been explored nor the direct effects of kisspeptin on sperm function have been studied so far. In the present study, we analysed the expression of kisspeptin and its receptor in sperm cells by western blot and immunocytochemistry assays and evaluated the effects of exposure to kisspeptin on sperm intracellular Ca(2+) concentration, [Ca(2+)]i, sperm motility, sperm hyperactivation and the acrosome reaction. Changes in [Ca(2+)]i were monitored using Fura-2, sperm kinematic parameters were measured using computer-assisted sperm analysis (CASA), and the acrosome reaction was measured using fluorescein isothiocyanate-coupled Pisum sativum agglutinin lectin (FITC-PSA method). We found that kisspeptin and its receptor are present in sperm cells, where both are mainly localized in the sperm head, around the neck and in the flagellum midpiece. Exposure to kisspeptin caused a slow, progressive increase in [Ca(2+)]i, which reached a plateau about 3-6 min after kisspeptin exposure. In addition, kisspeptin modulated sperm progressive motility causing a biphasic (stimulatory and inhibitory) response and also induced transient sperm hyperactivation. The effects of kisspeptin on sperm motility and hyperactivation were inhibited by the antagonist of KISS1R, peptide 234. Kisspeptin did not induce the acrosome reaction in human spermatozoa. These data show for the first time that kisspeptin and its receptor are present in human spermatozoa and modulate key parameters of sperm function. This may represent an additional mechanism for their crucial function in the control of male fertility.


Assuntos
Kisspeptinas/metabolismo , Espermatozoides/metabolismo , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA