Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diagnostics (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998606

RESUMO

This study focuses on developing accurate immunoassays for diagnosing Chagas disease (CD), a challenging task due to antigenic similarities between Trypanosoma cruzi and other parasites, leading to cross-reactivity. To address this challenge, chimeric recombinant T. cruzi antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) were synthesized to enhance specificity and reduce cross-reactivity in tests. While these antigens showed minimal cross-reactivity with leishmaniasis, their performance with other trypanosomatid infections was unclear. This study aimed to assess the diagnostic potential of these IBMP antigens for detecting CD in patients with Crithidia sp. LVH-60A, a parasite linked to visceral leishmaniasis-like symptoms in Brazil. This study involved seven Crithidia sp. LVH-60A patients and three Leishmania infantum patients. The results indicated that these IBMP antigens displayed 100% sensitivity, with specificity ranging from 87.5% to 100%, and accuracy values between 90% and 100%. No cross-reactivity was observed with Crithidia sp. LVH-60A, and only one L. infantum-positive sample showed limited cross-reactivity with IBMP-8.1. This study suggests that IBMP antigens offer promising diagnostic performance, with minimal cross-reactivity in regions where T. cruzi and other trypanosomatids are prevalent. However, further research with a larger number of Crithidia sp. LVH-60A-positive samples is needed to comprehensively evaluate antigen cross-reactivity.

2.
Braz J Microbiol ; 52(4): 2069-2073, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34342836

RESUMO

Serological assays are important tools to identify previous exposure to SARS-CoV-2, helping to track COVID-19 cases and determine the level of humoral response to SARS-CoV-2 infections and/or immunization to future vaccines. Here, the SARS-CoV-2 nucleocapsid protein was expressed in Escherichia coli and purified to homogeneity and high yield using a single chromatography step. The purified SARS-CoV-2 nucleocapsid protein was used to develop an indirect enzyme-linked immunosorbent assay for the identification of human SARS-CoV-2 seroconverts. The assay sensitivity and specificity were determined analyzing sera from 140 RT-qPCR-confirmed COVID-19 cases and 210 pre-pandemic controls. The assay operated with 90% sensitivity and 98% specificity; identical accuracies were obtained in head-to-head comparison with a commercial ELISA kit. Antigen-coated plates were stable for up to 3 months at 4 °C. The ELISA method described is ready for mass production and will be an additional tool to track COVID-19 cases.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Ensaio de Imunoadsorção Enzimática , Soroconversão , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Humanos , Imunidade Humoral , Proteínas do Nucleocapsídeo/genética , Fosfoproteínas/imunologia , Sensibilidade e Especificidade
3.
Transfusion ; 61(9): 2701-2709, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34240750

RESUMO

BACKGROUND: Chagas disease (CD) serological screening at blood banks is usually performed by a single highly sensitive serological assay, with chemiluminescent immunoassays (CLIAs) being the method of choice. CLIAs employ recombinant, fusion peptides and/or chimeric antigens that selectively capture anti-Trypanosoma cruzi antibodies. However, despite high sensitivity, the ability of these tests to identify CD-positive cases should be evaluated against T. cruzi strains circulating in specific locales. Herein, we used a latent class analysis (LCA) approach employing an array of four chimeric antigens to assess the diagnostic performance of the Liaison XL Murex Chagas CLIA for the detection of anti-T. cruzi IgG in serum samples. STUDY DESIGN AND METHODS: The study included a panel of 5014 serum samples collected from volunteer blood donors at the Hematology and Hemotherapy Foundation of the State of Bahia, submitted to anti-T. cruzi antibody detection using Liaison Chagas CLIA and LCA as a reference test in the absence of a gold standard. RESULTS: LCA classified 4993 samples as negative, while positivity for T. cruzi antibodies was predicted in 21 samples. Compared with LCA, CLIA demonstrated sensitivity and specificity of 76.2% and 99.5%, respectively, providing an overall accuracy of 99.4%. DISCUSSION: In blood banks lacking a de facto highly sensitive screening immunoassay, the low sensitivity offered by Liaison Chagas CLIA renders it unsuitable for standalone use in serological screening procedures for CD. Moreover, blood banks are encouraged to carefully assess the ability of diagnostic methods to identify local T. cruzi strains in circulation.


Assuntos
Doadores de Sangue , Segurança do Sangue , Doença de Chagas/diagnóstico , Trypanosoma cruzi/isolamento & purificação , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/sangue , Antígenos de Protozoários/imunologia , Doença de Chagas/sangue , Doença de Chagas/imunologia , Humanos , Medições Luminescentes , Trypanosoma cruzi/imunologia
4.
Biomed Res Int ; 2020: 1803515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32908871

RESUMO

Despite several available methodologies for Chagas disease (CD) serological screening, the main limitation of chronic CD diagnosis is the lack of effective tools for large-scale screening and point-of-care diagnosis to be used in different CD epidemiological scenarios. Taking into account that developing such a diagnostic tool will significantly improve the ability to identify CD carriers, we aimed at performing a proof-of-concept study (phase I study) to assess the use of these proteins in a point-of-care platform using serum samples from different geographical settings of Brazil and distinct clinical presentations. The diagnostic accuracy study was conducted on a panel of two WHO International Standards (IS) and 14 sera from T. cruzi-positive and 16 from T. cruzi-negative individuals. The results obtained with the test strips were converted to digital images, allowing quantitative comparison expressed as a relative band intensity ratio (RBI). The diagnostic potential and performance were also determined. Regardless of the geographical origin or clinical presentation, all sera with T. cruzi antibodies returned positive both for IBMP-8.1 and IBMP-8.4 chimeric antigens. The area under the ROC curve (AUC) values was 100% for both antigens, demonstrating an outstanding overall diagnostic accuracy (100%). Based on the data, we believe that the lateral flow assays based on these antigens are promising methodologies for screening CD.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Doença de Chagas/diagnóstico , Imunoensaio/métodos , Trypanosoma cruzi/imunologia , Antígenos de Protozoários/genética , Brasil , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Testes Imediatos , Estudo de Prova de Conceito , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Trypanosoma cruzi/genética
5.
PLoS Negl Trop Dis ; 13(6): e0007545, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242195

RESUMO

BACKGROUND: Dogs are considered sentinels in areas of Trypanosoma cruzi transmission risk to humans. ELISA is generally the method of choice for diagnosing T. cruzi exposure in dogs, but its performance substantially depends on the antigenic matrix employed. In previous studies, our group has developed four chimeric antigens (IBMP-8.1, 8.2, 8.3, and 8.4) and evaluated their potential for diagnosing T. cruzi exposure in humans. For human sera, these chimeric antigens presented superior diagnostic performances as compared to commercial tests available in Brazil, Spain, and Argentina. Therefore, in this study we have evaluated the potential of these antigenic proteins for detection of anti-T. cruzi IgG antibodies in dog sera. METHODOLOGY/PRINCIPAL FINDINGS: The IBMP-ELISA assays were optimized by checkerboard titration. Subsequently, the diagnostic potential was validated through analysis of ROC curves and the performance of the tests was determined using double entry tables. Cross-reactivity was also evaluated for babesiosis, ehrlichiosis, dirofilariosis, anaplasmosis, and visceral leishmaniasis. Best performance was shown by IBMP-8.3 and IBMP-8.4, although all four antigens demonstrated a high diagnostic performance with 46 positive and 149 negative samples tested. IBMP-8.3 demonstrated 100% sensitivity, followed by IBMP-8.4 (96.7-100%), IBMP-8.2 (73.3-87.5%), and IBMP-8.1 (50-100%). The highest specificities were achieved with IBMP-8.2 (100%) and IBMP-8.4 (100%), followed by IBMP-8.3 (96.7-97.5%) and IBMP 8.1 (89.1-100%). CONCLUSIONS/SIGNIFICANCE: The use of chimeric antigenic matrices in immunoassays for anti-T. cruzi IgG antibody detection in sera of infected dogs was shown to be a promising tool for veterinary diagnosis and epidemiological studies. The chimeric antigens used in this work allowed also to overcome the common hurdles related to serodiagnosis of T. cruzi infection, especially regarding variation of efficiency parameters according to different strains and cross-reactivity with other infectious diseases.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/veterinária , Doenças do Cão/diagnóstico , Proteínas Recombinantes de Fusão/imunologia , Testes Sorológicos/métodos , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/diagnóstico , Cães , Imunoglobulina G/sangue , Curva ROC , Sensibilidade e Especificidade
6.
BMC Microbiol ; 10: 259, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20942965

RESUMO

BACKGROUND: The three trypanosomatids pathogenic to men, Trypanosoma cruzi, Trypanosoma brucei and Leishmania major, are etiological agents of Chagas disease, African sleeping sickness and cutaneous leishmaniasis, respectively. The complete sequencing of these trypanosomatid genomes represented a breakthrough in the understanding of these organisms. Genome sequencing is a step towards solving the parasite biology puzzle, as there are a high percentage of genes encoding proteins without functional annotation. Also, technical limitations in protein expression in heterologous systems reinforce the evident need for the development of a high-throughput reverse genetics platform. Ideally, such platform would lead to efficient cloning and compatibility with various approaches. Thus, we aimed to construct a highly efficient cloning platform compatible with plasmid vectors that are suitable for various approaches. RESULTS: We constructed a platform with a flexible structure allowing the exchange of various elements, such as promoters, fusion tags, intergenic regions or resistance markers. This platform is based on Gateway® technology, to ensure a fast and efficient cloning system. We obtained plasmid vectors carrying genes for fluorescent proteins (green, cyan or yellow), and sequences for the c-myc epitope, and tandem affinity purification or polyhistidine tags. The vectors were verified by successful subcellular localization of two previously characterized proteins (TcRab7 and PAR 2) and a putative centrin. For the tandem affinity purification tag, the purification of two protein complexes (ribosome and proteasome) was performed. CONCLUSIONS: We constructed plasmids with an efficient cloning system and suitable for use across various applications, such as protein localization and co-localization, protein partner identification and protein expression. This platform also allows vector customization, as the vectors were constructed to enable easy exchange of its elements. The development of this high-throughput platform is a step closer towards large-scale trypanosome applications and initiatives.


Assuntos
Clonagem Molecular/métodos , Trypanosoma cruzi/genética , Dados de Sequência Molecular , Plasmídeos , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Transfecção , Trypanosoma cruzi/química , Trypanosoma cruzi/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA