Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33328228

RESUMO

The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.

2.
Rev Sci Instrum ; 80(3): 035108, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334953

RESUMO

A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 microm spot of approximately 5x10(9) photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 microm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (approximately 0.2 microm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10(-5) strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (approximately 150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis.

3.
J Synchrotron Radiat ; 12(Pt 5): 650-8, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16120990

RESUMO

A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

4.
Environ Sci Technol ; 37(1): 75-80, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12542293

RESUMO

Determining how environmentally important trace metals are sequestered in soils at the molecular scale is critical to developing a solid scientific basis for maintaining soil quality and formulating effective remediation strategies. The speciation of Zn and Ni in ferromanganese nodules from loess soils of the Mississippi Basin was determined by a synergistic use of three noninvasive synchrotron-based techniques: X-ray microfluorescence (microXRF), X-ray microdiffraction (microXRD), and extended X-ray absorption fine structure spectroscopy (EXAFS). We show that Ni is distributed between goethite (alpha-FeOOH) and the manganese oxide lithiophorite, whereas Zn is bound to goethite, lithiophorite, phyllosilicates, and the manganese oxide birnessite. The selective association of Ni with only iron and manganese oxides is an explanation for its higher partitioning in nodules over the soil clay matrix reported from soils worldwide. This could also explain the observed enrichment of Ni in oceanic manganese nodules. The combination of these three techniques provides a new method for determining trace metal speciation in both natural and contaminated environmental materials.


Assuntos
Compostos de Ferro/química , Níquel/química , Solo , Zinco/química , Monitoramento Ambiental , Compostos de Manganês/química , Minerais , Oxirredução , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA