Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(4): 1368-1379, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926800

RESUMO

Integrating electronic applications with paper, placed next to or below printed images or graphics, can further expand the possible uses of paper substrates. Consuming paper as a substrate in the field of electronics can lead to significant innovations toward papertronics applications as paper comprises various advantages like being disposable, inexpensive, biodegradable, easy to handle, simple to use, and easily available. All of these advantages will definitely spur the advancement of the electronics field, but unfortunately, putting electronics on paper is not an easy task because, compared to plastics, the paper surface is not just rough but also porous. For example, in the case of lateral flow assay testing the sensor response is delayed if the pore size of the paper is enormous. This might be a disadvantage for most electrical devices printed directly on paper. Still, some methods make it compatible when fit with a rough, absorbent surface of the paper. Building electronic devices on a standard paper substrate have sparked much interest because of its lightweight, environmental friendliness, minimal cost, and simple fabrication. A slew of improvements have been achieved in recent years to make paper electronics perform better in various applications, including transistors, batteries, and displays. In addition, flexible electronics have gained much interest in human-machine interaction and wireless sensing. This review briefly examines the origins and fabrication of paper electronics and then moves on to applications and exciting possible paths for paper-based electronics.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Região de Recursos Limitados , Eletrônica , Fontes de Energia Elétrica
2.
Biomed Microdevices ; 22(3): 51, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32748213

RESUMO

A quick and easy colorimetric sensor based on gold nanoparticles (GNPs) and aptamers for the detection of cocaine was developed. The sensor was named as 'GAPTA' and showed extremely interesting results regarding cocaine detection with a sensitivity to doses of 0.2 nM. The experimental approach consisted of creating a conjugate between GNPs (10 nm size) and aptamers as a sensing base with the addition of an electrolyte (NaCl) that plays the role of aggregation inducer. In the absence of the aptamer, the electrolyte was able to induce aggregation of the GNPs turning the color of the solution from red to blue while the presence of the aptamer is able to hinder the charges attraction and protects the GNPs from aggregating. The optimization of the aptamer and electrolyte concentration was determined to be 118 nM and 55 mM, respectively, and the resultant GAPTA sensor had a detection limit of 0.97 nM. Furthermore, the selectivity of the platform was tested in the presence of different interferents and showed a specific response towards cocaine while interference ranged between 20 and 40%. The applicability of the GAPTA biosensor was tested on synthetic saliva and demonstrated a sensitivity range between 0.2 and 25 nM. These results suggest the potential of the current colorimetric sensor in abuse drugs screening and creates a stable base for new routine platforms for biomedical and toxicology applications. Graphical abstract.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Cocaína/análise , Cocaína/química , Limite de Detecção , Coloides , Colorimetria , Eletrólitos/química , Ouro/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA