Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
3.
Eur Spine J ; 33(1): 298-306, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37659047

RESUMO

PURPOSE: The objective of this study was to investigate the optimal entry point and pedicle camber angle for L5 pedicle screws of different canal types. METHODS: CT imaging data were processed by Mimics for simulated pedicle screw placement, and PD (Pedicle diameter), PCA (Pedicle camber angle), LD (Longitudinal distance), TD (Transverse distance), and PBG (Pedicle screw breach grade) were measured. Then they were divided into the Round group and Trefoil group according to the type of spinal canal. When comparing PD, PCA, LD, TD, and PBG, the two sides of the pedicle were compared separately, so they were first divided into the round-type pedicle group and the trefoil-type pedicle group. RESULTS: In the round-type pedicle group (n = 134) and the trefoil-type pedicle group (n = 264), there was no significant difference in PD and LD, but there was a significant difference in PCA between the two groups (t = - 4.072, P < 0.05). A statistically significant difference in the distance of the Magerl point relative to the optimal entry point (t = - 3.792, P < 0.05), and the distance of the Magerl point relative to the optimal entry point was greater in the trefoil-type pedicle group than in the round-type pedicle group. CONCLUSION: The optimal entry point for L5 is more outward than the Magerl point, and the Trefoil spinal canal L5 is more outwardly oriented than the Round spinal canal L5, with a greater angle of abduction during pedicle screw placement.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Estudos Retrospectivos , Fusão Vertebral/métodos , Canal Medular/diagnóstico por imagem , Canal Medular/cirurgia , Tomografia Computadorizada por Raios X
4.
J Inflamm Res ; 16: 6301-6317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149115

RESUMO

Purpose of the Review: Emerging evidence has shown that ankylosing spondylitis fibroblasts (ASFs) act as crucial participants in inflammation and abnormal ossification in ankylosing spondylitis (AS). This review examines the investigations into ASFs and their pathological behavior, which contributes to inflammatory microenvironments and abnormal bone formation. The review spans the period from 2000 to 2023, with a primary focus on the most recent decade. Additionally, the review provides an in-depth discussion on studies on ASF ossification at the cellular level. Recent Findings: ASFs organize immune functions by recruiting immune cells and influencing their differentiation and activation, thus mediate the inflammatory response in the early phase of disease. ASFs promote joint destruction at sites of cartilage and actively promote abnormal ossification by recruiting osteoblasts, differentiation into myofibroblasts or ossification directly. Many signaling pathways and cytokines such as Wnt signaling and BMP/TGF-ß signaling are involved in ASF ossification. Summary: ASFs play a key role in AS inflammation and osteogenesis. Further studies are required to elucidate molecular mechanisms behind that and provide new targets and directions for AS diagnosis and treatment from a new perspective of fibroblasts.

5.
Oncol Res ; 31(3): 375-388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305386

RESUMO

Triple-negative breast cancer (TNBC) is characterized by fast growth, high metastasis, high invasion, and a lack of therapeutic targets. Mitosis and metastasis of TNBC cells are two important biological behaviors in TNBC malignant progression. It is well known that the long noncoding RNA AFAP1-AS1 plays a crucial role in various tumors, but whether AFAP1-AS1 is involved in the mitosis of TNBC cells remains unknown. In this study, we investigated the functional mechanism of AFAP1-AS1 in targeting Polo-like Kinase 1 (PLK1) activation and participating in mitosis of TNBC cells. We detected the expression of AFAP1-AS1 in the TNBC patient cohort and primary cells by in situ hybridization (ISH), northern blot, fluorescent in situ hybridization (FISH) and cell nucleus/cytoplasm RNA fraction isolation. High AFAP1-AS1 expression was negatively correlated with overall survival (OS), disease-free survival (DFS), metastasis-free survival (MFS) and recurrence-free survival (RFS) in TNBC patients. We explored the function of AFAP1-AS1 by transwell, apoptosis, immunofluorescence (IF) and patient-derived xenograft (PDX) models in vitro and in vivo. We found that AFAP1-AS1 promoted TNBC primary cell survival by inhibiting mitotic catastrophe and increased TNBC primary cell growth, migration and invasion. Mechanistically, AFAP1-AS1 activated phosphorylation of the mitosis-associated kinase PLK1 protein. Elevated levels of AFAP1-AS1 in TNBC primary cells increased PLK1 pathway downstream gene expression, such as CDC25C, CDK1, BUB1 and TTK. More importantly, AFAP1-AS1 increased lung metastases in a mouse metastasis model. Taken together, AFAP1-AS1 functions as an oncogene that activates the PLK1 signaling pathway. AFAP1-AS1 could be used as a potential prognostic marker and therapeutic target for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/genética , Hibridização in Situ Fluorescente , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Quinase 1 Polo-Like
6.
Front Genet ; 13: 991875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246583

RESUMO

Objective: We have already demonstrated that mesenchymal stem cells from patients with ankylosing spondylitis (ASMSCs) exhibited greater adipogenic differentiation potential than those from healthy donors (HDMSCs). Here, we further investigated the expression profile of long noncoding RNA (lncRNA) and mRNA, aiming to explore the underlying mechanism of abnormal adipogenic differentiation in ASMSCs. Methods: HDMSCs and ASMSCs were separately isolated and induced with adipogenic differentiation medium for 10 days. Thereafter, lncRNAs and mRNAs that were differentially expressed (DE) between HDMSCs and ASMSCs were identified via high-throughput sequencing and confirmed by quantitative real-time PCR (qRT-PCR) assays. Then, the DE genes were annotated and enriched by GO analysis. In addition, protein interaction network was constructed to evaluate the interactions between DE mRNAs and to find hub nodes and study cliques. Besides, co-expression network analysis was carried out to assess the co-expressions between DE mRNA and DE lncRNAs, and competing endogenous RNA (ceRNA) network analysis were conducted to predict the relationships among lncRNAs, mRNAs and miRNAs. The signaling pathways based on the DE genes and the predicted DE genes were enriched by KEGG analysis. Results: A total of 263 DE lncRNAs and 1376 DE mRNAs were found during adipogenesis in ASMSCs. qRT-PCR indicated that the expression of the top 20 mRNAs and the top 10 lncRNAs was consistent with the high-throughput sequencing data. Several lncRNAs (NR_125386.1, NR_046473.1 and NR_038937.1) and their target genes (SPN and OR1AIP2), together with the significantly co-expressed pairs of DE lncRNAs and DE mRNAs (SLC38A5-ENST00000429588.1, TMEM61-ENST00000400755.3 and C5orf46-ENST00000512300.1), were closely related to the enhanced adipogenesis of ASMSCs by modulating the PPAR signaling pathway. Conclusion: Our study analyzed the expression profiles of DE lncRNAs and DE mRNAs during adipogenesis in ASMSCs and HDMSCs. Several DE lncRNAs, DE mRNAs and signaling pathways that probably participate in the aberrant adipogenesis of ASMSCs were selected for future study. These results will likely provide potential targets for our intervention on fat metaplasia and subsequent new bone formation in patients with AS in the future.

7.
Stem Cells ; 40(5): 508-522, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35403694

RESUMO

Bone marrow (BM) adipose tissue (BMAT), a unique adipose depot, plays an important role in diseases such as osteoporosis and bone metastasis. Precise control of mesenchymal stem cell (MSC) differentiation is critical for BMAT formation and regeneration. Here, we show that death associated protein kinase 1 (DAPK1) negatively regulates BM adipogenesis in vitro and in vivo. Prx1creDapk1loxp/loxp mice showed more adipocytes in the femur than Dapk1loxp/loxp mice. Further mechanistic analyses revealed that DAPK1 inhibits p38 mitogen-activated protein kinase (MAPK) signaling in the nucleus by binding the p38 isoform MAPK14, decreasing p38 nuclear activity, which subsequently inhibits BM adipogenesis. The inhibitory effect of DAPK1 against MAPK14 was independent of its kinase activity. In addition, the decreased DAPK1 was observed in the BM-MSCs of ageing mice. Our results reveal a previously undescribed function for DAPK1 in the regulation of adipogenesis and may also reveal the underlying mechanism of BMAT formation in ageing.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Mesenquimais , Proteína Quinase 14 Ativada por Mitógeno , Adipogenia , Animais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Isoformas de Proteínas/metabolismo
8.
Mol Ther Nucleic Acids ; 26: 557-574, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34631285

RESUMO

Expansion in vitro prior to mesenchymal stem cells (MSCs) application is a necessary process. Functional and genomic stability has a crucial role in stem-cell-based therapies. However, the exact expression and co-expressed profiles of coding and non-coding RNAs in human bone marrow (BM)-MSCs in vitro aging are still lacking. In the present studies, the change of morphology, immunophenotype, and capacity of proliferation, differentiation, and immunoregulation of MSCs at passage (P) 4, P6, P8, P10, and P12 were investigated. RNA sequencing identified that 439 mRNAs, 65 long noncoding RNAs (lncRNAs), 59 microRNAs (miRNAs), and 229 circular RNAs (circRNAs) were differentially expressed (DE) in P12 compared with P4, with a similar trend in P6. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) identified several significant biological processes and pathways, including binding, ossification, and Wnt and PPAR signaling pathways. Interaction and co-expression/localization analyses were performed for DE mRNAs and lncRNAs, and several key lncRNAs, circRNAs, and important pathways like autophagy and mitophagy were identified in the competing endogenous RNA (ceRNA) network. Some key RNAs found in the bioinformatics analysis were validated. Our studies indicate that replicative senescence of MSCs is a continuous process, including widespread alterations in biological characteristics and global gene expression patterns that need to be considered before therapeutic applications of MSCs.

9.
Nat Commun ; 12(1): 5373, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508078

RESUMO

Ankylosing spondylitis (AS) is a type of rheumatic disease characterized by chronic inflammation and pathological osteogenesis in the entheses. Previously, we demonstrated that enhanced osteogenic differentiation of MSC from AS patients (AS-MSC) resulted in pathological osteogenesis, and that during the enhanced osteogenic differentiation course, AS-MSC induced TNF-α-mediated local inflammation. However, whether TNF-α in turn affects AS-MSC remains unknown. Herein, we further demonstrate that a high-concentration TNF-α treatment triggers enhanced directional migration of AS-MSC in vitro and in vivo, which enforces AS pathogenesis. Mechanistically, TNF-α leads to increased expression of ELMO1 in AS-MSC, which is mediated by a METTL14 dependent m6A modification in ELMO1 3'UTR. Higher ELMO1 expression of AS-MSC is found in vivo in AS patients, and inhibiting ELMO1 in SKG mice produces therapeutic effects in this spondyloarthritis model. This study may provide insight into not only the pathogenesis but also clinical therapy for AS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células-Tronco Mesenquimais/patologia , Osteogênese/genética , Espondilite Anquilosante/patologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Biópsia , Medula Óssea/patologia , Estudos de Casos e Controles , Diferenciação Celular/genética , Movimento Celular/genética , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Cultura Primária de Células , Espondilite Anquilosante/induzido quimicamente , Espondilite Anquilosante/diagnóstico , Espondilite Anquilosante/genética , Microtomografia por Raio-X , beta-Glucanas/administração & dosagem , beta-Glucanas/efeitos adversos
10.
J Neurosurg Spine ; : 1-8, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34087791

RESUMO

OBJECTIVE: The aim of this study was to compare a traditional cervical cage with a zero-profile (ZP) fixation device in patients who underwent three-level anterior cervical decompression and fusion (ACDF) in terms of patient-reported outcomes (visual analog scale [VAS], Japanese Orthopaedic Association [JOA], and Neck Disability Index [NDI] scores), radiographic findings (sagittal alignment 2 years after surgery and likelihood of fusion), and complications. METHODS: This study was a retrospective case series. Between January 2012 and December 2016, 58 patients with cervical spondylotic myelopathy (CSM) who required three-level ACDF procedures, as identified by spinal surgeons, were treated with three-level ACDF and an anterior cage-plate construct (ACPC) (n = 38) or a three-level stand-alone ZP device (n = 20). On the basis of patient choice, patients were divided into two groups (ACPC group and ZP group). All patients completed a minimum of 2 years of follow-up. Patient-reported outcome scores included VAS, JOA, and NDI scores. The radiographic findings included sagittal alignment and likelihood of fusion 2 years after surgery. Data related to patient-reported outcomes and sagittal alignment were collected preoperatively, postoperatively, and at the final follow-up. Intraoperative and postoperative complications were also documented and analyzed. RESULTS: The clinical outcomes, including VAS, JOA, and NDI scores, showed improvement in both groups, and no significant difference was observed between the two groups. Sagittal alignment and height of the fused segments were restored in all patients. However, the authors found no differences between the ZP and ACPC groups, and the groups exhibited similar fusion rates. The authors found no differences in complications, including dysphagia, adjacent-segment degeneration, and postoperative hematoma, between the groups. CONCLUSIONS: Use of ZP implants yielded satisfactory long-term clinical and radiological outcomes that were similar to those of the standard ACPC. Additionally, the rates of complications between the groups were not significantly different. Although the best surgical option for multilevel CSM remains controversial, the results of this work suggest that ACDF with the ZP device is feasible, safe, and effective, even for multilevel CSM.

11.
Cell Death Dis ; 12(6): 578, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088896

RESUMO

N6-methyladenosine (m6A) modification is widespread in messenger RNAs and increasing evidence suggests the crucial roles of m6A in cell differentiation and tissue development. However, whether m6A modulates the osteogenic differentiation of mesenchymal stem cells (MSCs) has not been fully elucidated. Here we show that conditional knockout of the demethylase Alkbh5 in bone marrow MSCs strengthened bone mass in mice. Loss- and gain-of-function studies demonstrated that ALKBH5 negatively regulates the osteogenic differentiation of MSCs in vitro. At a mechanistic level, meRIP-seq and RNA-seq in MSCs following knockdown of ALKBH5 revealed changes in transcripts of PRMT6 containing consensus m6A motifs required for demethylation by ALKBH5. Furthermore, we found that ALKBH5 accelerates the degradation rate of PRMT6 mRNA in an m6A-dependent manner, and that the ALKBH5-PRMT6 axis regulates the osteogenesis of MSCs, mainly through activation of the PI3K/AKT pathway. Thus, our work reveals a different facet of the novel ALKBH5-PRMT6 axis that modulates the osteogenic differentiation of MSCs, which can serve as a target to improve the clinical use of MSCs.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Nucleares/metabolismo , Osteócitos/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteócitos/citologia , Osteogênese
12.
Clin Transl Med ; 11(6): e429, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185419

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are the major source of osteoblasts. Long noncoding RNAs (lncRNAs) are abundantly expressed RNAs that lack protein-coding potential and play an extensive regulatory role in cellular biological activities. However, the regulatory network of lncRNAs in MSC osteogenesis needs further investigation. METHODS: QRT-PCR, western blot, immunofluorescence, and immunohistochemistry assays were used to determine the levels of relevant genes. The osteogenic differentiation capability was evaluated by using Alizarin Red S (ARS) staining, alkaline phosphatase activity assays, hematoxylin & eosin staining or micro-CT. RNA fluorescence in situ hybridization (FISH) and RNAscope were used to detect HHAS1 expression in cells and bone tissue. A microarray assay was performed to identify differentially expressed microRNAs. RNA immunoprecipitation and RNA pull-down were used to explore the interactions between related proteins and nucleic acids. RESULTS: The level of lncRNA HHAS1 increased during bone marrow-derived MSC (BMSC) osteogenesis and was positively related to the levels of osteogenic genes and ARS intensity. HHAS1 was located in both the cytoplasm and the nucleus and was expressed in human bone tissue. HHAS1 facilitated BMSC osteogenic differentiation by downregulating miR-204-5p expression and enhancing the level of RUNX family transcription factor 2 (RUNX2). In addition, interferon regulatory factor 2 (IRF2) was increased during BMSC osteogenic differentiation and interacted with the promoter of HHAS1, which resulted in the transcriptional activation of HHAS1. Furthermore, IRF2 and HHAS1 helped improve bone defect repair in vivo. CONCLUSIONS: Our study identified a novel lncRNA, HHAS1, that facilitates BMSC osteogenic differentiation and proposed a role for the IRF2/HHAS1/miR-204-5p/RUNX2 axis in BMSC osteogenesis regulation. These findings help elucidate the regulatory network of BMSC osteogenesis and provide potential targets for clinical application.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fraturas Ósseas/terapia , Fator Regulador 2 de Interferon/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese , RNA Longo não Codificante/genética , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Humanos , Fator Regulador 2 de Interferon/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia
13.
Stem Cell Reports ; 16(4): 926-939, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33798448

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like unconventional T cells that are abundant in humans and have attracted increasing attention in recent years. Mesenchymal stem cells (MSCs) are crucial regulators of immune cells. However, whether MAIT cells are regulated by MSCs is unclear. Here, we explored the effect of MSCs on MAIT cells and revealed the underlying mechanism. We found that MSCs did not influence the proliferation of MAIT cells but strikingly induced an activated phenotype with an increased expression of CD69, TNF-α, IFN-γ, and granzyme B. Moreover, MSCs activated MAIT cells in a TCR-MR1-independent mechanism through MSC-secreted IL-15. We revealed that MSC-derived IL-15 activated MAIT cells by enhancing autophagy activity, which was abolished by the autophagy inhibitor 3-methyladenine. Based on our findings, MAIT cells are activated by MSCs through IL-15-induced autophagy, which may help elucidate the mechanisms underlying some immune responses and diseases and provide guidance for future research.


Assuntos
Autofagia , Interleucina-15/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Proliferação de Células , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Menor , Receptores de Antígenos de Linfócitos T/metabolismo
14.
Clin Transl Med ; 10(7): e227, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33252864

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate via osteogenesis and adipogenesis. The mechanism underlying MSC lineage commitment still remains incompletely elucidated. Understanding the regulatory mechanism of MSC differentiation will help researchers induce MSCs toward specific lineages for clinical use. In this research, we intended to figure out the long noncoding RNA (lncRNA) that plays a central role in MSC fate determination and explore its application value in tissue engineering. METHODS: The expression pattern of lncRNAs during MSC osteogenesis/adipogenesis was detected by microarray and qRT-PCR. Lentivirus and siRNAs were constructed to regulate the expression of lncRNA repressor of adipogenesis (ROA). MSC osteogenesis/adipogenesis was evaluated by western blot and alizarin red/oil red staining. An adipokine array was used to select the paracrine/autocrine factor PTX3, followed by RNA interference or recombinant human protein stimulation to confirm its function. The activation of signaling pathways was also detected by western blot, and a small molecule inhibitor, SCH772984, was used to inhibit the activation of the ERK pathway. The interaction between ROA and hnRNP A1 was detected by RNA pull-down and RIP assays. Luciferase reporter and chromatin immunoprecipitation assays were used to confirm the binding of hnRNP A1 to the PTX3 promotor. Additionally, an in vivo adipogenesis experiment was conducted to evaluate the regulatory value of ROA in tissue engineering. RESULTS: In this study, we demonstrated that MSC adipogenesis is regulated by lncRNA ROA both in vitro and in vivo. Mechanistically, ROA inhibits MSC adipogenesis by downregulating the expression of the key autocrine/paracrine factor PTX3 and the downstream ERK pathway. This downregulation was achieved through transcription inhibition by impeding hnRNP A1 from binding to the promoter of PTX3. CONCLUSIONS: ROA negatively regulates MSC adipogenesis through the hnRNP A1-PTX3-ERK axis. ROA may be an effective target for modulating MSCs in tissue engineering.

15.
Elife ; 92020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006314

RESUMO

Osteoporosis is a common systemic skeletal disorder resulting in bone fragility and increased fracture risk. It is still necessary to explore its detailed mechanisms and identify novel targets for the treatment of osteoporosis. Previously, we found that a lncRNA named GAS5 in human could negatively regulate the lipoblast/adipocyte differentiation. However, it is still unclear whether GAS5 affects osteoblast differentiation and whether GAS5 is associated with osteoporosis. Our current research found that GAS5 was decreased in the bones and BMSCs, a major origin of osteoblast, of osteoporosis patients. Mechanistically, GAS5 promotes the osteoblast differentiation by interacting with UPF1 to degrade SMAD7 mRNA. Moreover, a decreased bone mass and impaired bone repair ability were observed in Gas5 heterozygous mice, manifesting in osteoporosis. The systemic supplement of Gas5-overexpressing adenoviruses significantly ameliorated bone loss in an osteoporosis mouse model. In conclusion, GAS5 promotes osteoblast differentiation by targeting the UPF1/SMAD7 axis and protects against osteoporosis.


Assuntos
Osteoblastos/fisiologia , Osteoporose/metabolismo , RNA Helicases/metabolismo , RNA Longo não Codificante/metabolismo , Proteína Smad7/metabolismo , Transativadores/metabolismo , Animais , Western Blotting , Diferenciação Celular , Eletroforese em Gel de Ágar , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/fisiologia
16.
Cell Death Dis ; 11(9): 775, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943613

RESUMO

Ankylosing spondylitis (AS) is a chronic inflammatory disease possessing a morbid serum microenvironment with enhanced oxidative stress. Long-term exposure to an oxidative environment usually results in cellular senescence alone with cellular dysfunction. Mesenchymal stem cells (MSCs) are a kind of stem cell possessing strong capabilities for immunoregulation, and senescent MSCs may increase inflammation and participate in AS pathogenesis. The objective of this study was to explore whether and how the oxidative serum environment of AS induces MSC senescence. Here, we found that AS serum facilitated senescence of MSCs in vitro, and articular tissues from AS patients exhibited higher expression levels of the cell cycle arrest-related proteins p53, p21 and p16. Importantly, the levels of advanced oxidative protein products (AOPPs), markers of oxidative stress, were increased in AS serum and positively correlated with the extent of MSC senescence induced by AS serum. Furthermore, MSCs cultured with AS serum showed decreased mitochondrial membrane potential and ATP production together with a reduced oxygen consumption rate. Finally, we discovered that AS serum-induced mitochondrial dysfunction resulted in elevated reactive oxygen species (ROS) in MSCs, and ROS inhibition successfully rescued MSCs from senescence. In conclusion, our data demonstrated that the oxidative serum environment of AS facilitated MSC senescence through inducing mitochondrial dysfunction and excessive ROS production. These results may help elucidate the pathogenesis of AS and provide potential targets for AS treatment.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espondilite Anquilosante/sangue , Espondilite Anquilosante/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Citocinas/metabolismo , Feminino , Humanos , Inflamação , Masculino , Potencial da Membrana Mitocondrial , Compostos Organofosforados/farmacologia , Oxigênio/metabolismo , Consumo de Oxigênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Células-Tronco/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Adulto Jovem
17.
Front Genet ; 11: 896, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849851

RESUMO

Ectopic bone formation is the chief characteristic of ossification of the posterior longitudinal ligament (OPLL). Emerging evidence has revealed that long non-coding RNAs (lncRNAs) can regulate the osteogenic differentiation of mesenchymal stem cells (MSCs), which are the main cells responsible for bone formation. However, the role of lncRNAs in the pathogenesis of OPLL remains unclear. In this study, 725 aberrantly expressed lncRNAs and 664 mRNAs in osteogenically differentiated MSCs from OPLL patients (OPLL MSCs) were identified by microarrays and confirmed by qRT-PCR assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the most enriched pathways included the p53, JAK-STAT, and PI3K-Akt signaling pathways. The co-expression network showed the interactions between the aberrantly expressed lncRNAs and mRNAs in OPLL MSCs, and the potential targets and transcription factors of the lncRNAs were predicted. Our research demonstrated the aberrantly expressed lncRNA and mRNA and the potential regulatory networks involved in the ectopic bone formation of OPLL. These findings imply that lncRNAs may play a vital role in OPLL, which provides a new perspective on the pathogenesis of OPLL.

18.
J Cell Mol Med ; 24(17): 9786-9797, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32715654

RESUMO

Human osteoclasts are differentiated from CD14+ monocytes and are responsible for bone resorption. Long non-coding RNAs (lncRNAs) have been proved to be significantly involved in multiple biologic processes, especially in cell differentiation. However, the effect of lncRNAs in osteoclast differentiation is less appreciated. In our study, RNA sequencing (RNA-seq) was used to identify the expression profiles of lncRNAs and mRNAs in osteoclast differentiation. The results demonstrated that expressions of 1117 lncRNAs and 296 mRNAs were significantly altered after osteoclast differentiation. qRT-PCR assays were performed to confirm the expression profiles, and the results were almost consistent with the RNA-seq data. GO and KEGG analyses were used to predict the functions of these differentially expressed mRNA and lncRNAs. The Path-net analysis demonstrated that MAPK pathway, PI3K-AKT pathway and NF-kappa B pathway played important roles in osteoclast differentiation. Co-expression networks and competing endogenous RNA networks indicated that ENSG00000257764.2-miR-106a-5p-TIMP2 may play a central role in osteoclast differentiation. Our study provides a foundation to further understand the role and underlying mechanism of lncRNAs in osteoclast differentiation, in which many of them could be potential targets for bone metabolic disease.


Assuntos
Diferenciação Celular/genética , Hematopoese/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Humanos , Receptores de Lipopolissacarídeos/genética , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Osteoclastos/metabolismo , RNA-Seq , Transdução de Sinais/genética , Transcriptoma/genética
19.
EBioMedicine ; 54: 102722, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32268273

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) selectively differentiate into adipocytes or osteoblasts, and several molecules control the fate determination of MSCs. Understanding these key checkpoints greatly contributes to the ability to induce specific MSC differentiation for clinical applications. In this study, we aimed to explore whether TNF receptor-associated factor 4 (TRAF4) affects MSC adipogenic differentiation, which we previously reported that could positively regulated the osteogenic differentiation. METHODS: Western blotting and Real-time Polymerase Chain Reaction were used to detected the expression pattern of TRAF4 during adipogenic differentiation. Lentivirus was constructed to regulate TRAF4 expression, and oil red O staining and Western blotting were used to assess its role in adipogenesis, which was confirmed in vivo by implanting an MSC-matrigel mixture into nude mice. Western blotting was used to detect the activated signaling pathways, and a specific inhibitor and agonist were used to clear the roles of the key signaling pathways. Additionaly, Co-Immunoprecipitation was conducted to find that Pyruvate kinase isozyme type M2 (PKM2) interacts with TRAF4, and to further explore their binding and functional domains. Finally, an RNA-binding protein immunoprecipitation assay and Western blotting were used to detect whether N6-methyladenosine mediates the decreased TRAF4 expression during adipogenic differentiation. FINDINGS: The results demonstrated that TRAF4 negatively regulates MSC adipogenesis in vitro and in vivo. Mechanistically, we revealed that TRAF4 binds to PKM2 to activate the kinase activity of PKM2, which subsequently activates ß-catenin signaling and then inhibits adipogenesis. Furthermore, TRAF4 downregulation during adipogenesis is regulated by ALKBH5-mediated N6-methyladenosine RNA demethylation. INTERPRETATION: TRAF4 negatively regulates the adipogenesis of MSCs by activating PKM2 kinase activity, which may act as a checkpoint to fine-tune the balance of adipo-osteogenic differentiation, and suggests that TRAF4 may be a novel target of MSCs in clinical use and may also illuminate the underlying mechanisms of bone metabolic diseases. FUNDING: This study was supported by the National Natural Science Foundation of China (81871750 and 81971518) and the Science and Technology Project of Guangdong Province (2019B02023600 and 2017A020215070).


Assuntos
Adipócitos/metabolismo , Adipogenia , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Hormônios Tireóideos/metabolismo , Adipócitos/citologia , Proteínas de Transporte/genética , Células Cultivadas , Células HEK293 , Humanos , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Ligação Proteica , Fator 4 Associado a Receptor de TNF/genética , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
20.
Stem Cells Int ; 2019: 4143167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827527

RESUMO

OBJECTIVE: To investigate the adipogenic differentiation capacity of mesenchymal stem cells (MSCs) from ankylosing spondylitis (AS) patients and explore the mechanism of abnormal MSC adipogenesis in AS. METHODS: MSCs from patients with AS (ASMSCs) and healthy donors (HDMSCs) were cultured in adipogenic differentiation medium for up to 21 days. Adipogenic differentiation was determined using oil red O (ORO) staining and quantification and was confirmed by assessing adipogenic marker expression (PPAR-γ, FABP4, and adiponectin). Gene expression of adipogenic markers was detected using qRT-PCR. Protein levels of adipogenic markers and signaling pathway-related molecules were assessed via Western blotting. Levels of bone morphogenetic proteins 4, 6, 7, and 9 were determined using enzyme-linked immunosorbent assays. Lentiviruses encoding short hairpin RNAs (shRNAs) were constructed to reverse abnormal bone morphogenetic protein receptor 1A (BMPR1A) expression and evaluate its role in abnormal ASMSC adipogenic differentiation. Bone marrow fat content was assessed using hematoxylin and eosin (HE) staining. BMPR1A expression in bone marrow MSCs was measured using immunofluorescence staining. RESULTS: ASMSCs exhibited a greater adipogenic differentiation capacity than HDMSCs. During adipogenesis, ASMSCs expressed BMPR1A at higher levels, which activated the BMP-pSmad1/5/8 signaling pathway and increased adipogenesis. BMPR1A silencing using an shRNA eliminated the difference in adipogenic differentiation between HDMSCs and ASMSCs. Moreover, HE and immunofluorescence staining showed higher bone marrow fat content and BMPR1A expression in patients with AS than in healthy donors. CONCLUSION: Increased BMPR1A expression induces abnormal ASMSC adipogenic differentiation, potentially contributing to fat metaplasia and thus new bone formation in patients with AS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA