Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Oncol (Dordr) ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095764

RESUMO

BACKGROUND: Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION: Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.

2.
Cell Death Discov ; 9(1): 317, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633946

RESUMO

Chromobox Protein 3 (CBX3) overexpression is a common event occurring in cancer, promotes cancer cell proliferation and represents a poor prognosis marker in a plethora of human cancers. Here we describe that a wide spectrum of human cancers harbors a co-amplification of CBX3 gene with either EGFR or RAC1, which yields a statistically significant increase of both mRNA and protein levels of CBX3, EGFR and RAC1. We also reveal that the simultaneous overexpression of CBX3, RAC1 and EGFR gene products correlates with a worse prognosis compared to the condition when CBX3, RAC1 and EGFR are singularly upregulated. Furthermore, we also show that a co-occurrence of low-grade amplification, in addition to high-grade amplification, between CBX3 and EGFR or RAC1 is associated with a reduced patient lifespan. Finally, we find that CBX3 and RAC1/EGFR genetically interact in the model organism Drosophila melanogaster, suggesting that the simultaneous overexpression as well as well the co-occurrence of high- or low-grade copy number alterations in these genes is not accidental and could reflect evolutionarily conserved functional relationships.

3.
Front Pharmacol ; 13: 1071176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532747

RESUMO

Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non-Homologous End-Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS.

4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362070

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence that includes FP-RMS, harboring the fusion oncoprotein PAX3/7-FOXO1 and FN-RMS, often mutant in the RAS pathway. Risk stratifications of RMS patients determine different prognostic groups and related therapeutic treatment. Current multimodal therapeutic strategies involve surgery, chemotherapy (CHT) and radiotherapy (RT), but despite the deeper knowledge of response mechanisms underpinning CHT treatment and the technological improvements that characterize RT, local failures and recurrence frequently occur. This review sums up the RMS classification and the management of RMS patients, with special attention to RT treatment and possible radiosensitizing strategies for RMS tumors. Indeed, RMS radioresistance is a clinical problem and further studies aimed at dissecting radioresistant molecular mechanisms are needed to identify specific targets to hit, thus improving RT-induced cytotoxicity.


Assuntos
Fatores de Transcrição Box Pareados , Rabdomiossarcoma , Adolescente , Humanos , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/radioterapia , Proteínas de Fusão Oncogênica/metabolismo
5.
Cells ; 11(21)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359878

RESUMO

Telomeres in Drosophila melanogaster, which have inspired a large part of Sergio Pimpinelli work, are similar to those of other eukaryotes in terms of their function. Yet, their length maintenance relies on the transposition of the specialized retrotransposons Het-A, TART, and TAHRE, rather than on the activity of the enzyme telomerase as it occurs in most other eukaryotic organisms. The length of the telomeres in Drosophila thus depends on the number of copies of these transposable elements. Our previous work has led to the isolation of a dominant mutation, Tel1, that caused a several-fold elongation of telomeres. In this study, we molecularly identified the Tel1 mutation by a combination of transposon-induced, site-specific recombination and next-generation sequencing. Recombination located Tel1 to a 15 kb region in 92A. Comparison of the DNA sequence in this region with the Drosophila Genetic Reference Panel of wild-type genomic sequences delimited Tel1 to a 3 bp deletion inside intron 8 of Ino80. Furthermore, CRISPR/Cas9-induced deletions surrounding the same region exhibited the Tel1 telomere phenotype, confirming a strict requirement of this intron 8 gene sequence for a proper regulation of Drosophila telomere length.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Produtos do Gene gag/genética , Telômero/genética , Mutação/genética
6.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628279

RESUMO

A large amount of evidence from radiobiology studies carried out in Deep Underground Laboratories support the view that environmental radiation may trigger biological mechanisms that enable both simple and complex organisms to cope with genotoxic stress. In line with this, here we show that the reduced radiation background of the LNGS underground laboratory renders Drosophila neuroblasts more sensitive to ionizing radiation-induced (but not to spontaneous) DNA breaks compared to fruit flies kept at the external reference laboratory. Interestingly, we demonstrate that the ionizing radiation sensitivity of flies kept at the LNGS underground laboratory is rescued by increasing the underground gamma dose rate to levels comparable to the low-LET reference one. This finding provides the first direct evidence that the modulation of the DNA damage response in a complex multicellular organism is indeed dependent on the environmental dose rate.


Assuntos
Drosophila , Laboratórios , Animais , Radiação de Fundo , Dano ao DNA , Larva
8.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072207

RESUMO

During spermatogenesis, the Golgi apparatus serves important roles including the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. We have previously demonstrated that D. melanogaster ATP-dependent Citrate Lyase (ATPCL) is required for spindle organization, cytokinesis, and fusome assembly during male meiosis, mainly due to is activity on fatty acid biosynthesis. Here, we show that depletion of DmATPCL also affects the organization of acrosome and suggest a role for this enzyme in the assembly of Golgi-derived structures during Drosophila spermatogenesis.


Assuntos
ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Drosophila/fisiologia , Complexo de Golgi/metabolismo , Meiose , Animais , Expressão Gênica , Masculino , Espermátides/citologia , Espermátides/metabolismo , Espermatogênese/genética
9.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33446491

RESUMO

Accumulation of senescent cells is an important contributor to chronic inflammation upon aging. The inflammatory phenotype of senescent cells was previously shown to be driven by cytoplasmic DNA. Here, we propose that cytoplasmic double-stranded RNA has a similar effect. We find that several cell types driven into senescence by different routes share an accumulation of long promoter RNAs and 3' gene extensions rich in retrotransposon sequences. Accordingly, these cells display increased expression of genes involved in response to double stranded RNA of viral origin downstream of the interferon pathway. The RNA accumulation is associated with evidence of reduced RNA turnover, including in some cases, reduced expression of RNA exosome subunits. Reciprocally, depletion of RNA exosome subunit EXOSC3 accelerated expression of multiple senescence markers. A senescence-like RNA accumulation was also observed in cells exposed to oxidative stress, an important trigger of cellular senescence. Altogether, we propose that in a subset of senescent cells, repeat-containing transcripts stabilized by oxidative stress or reduced RNA exosome activity participate in driving and maintaining the permanent inflammatory state characterizing cellular senescence.


Assuntos
Senescência Celular/genética , Estabilidade de RNA/genética , RNA/metabolismo , Linhagem Celular , Dano ao DNA , Humanos , Inflamação/metabolismo , Estresse Oxidativo/genética , Fenótipo , RNA/genética , RNA de Cadeia Dupla/efeitos adversos , RNA de Cadeia Dupla/genética , Retroelementos/genética
10.
Front Public Health ; 8: 611146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365298

RESUMO

Scientific community and institutions (e. g., ICRP) consider that the Linear No-Threshold (LNT) model, which extrapolates stochastic risk at low dose/low dose rate from the risk at moderate/high doses, provides a prudent basis for practical purposes of radiological protection. However, biological low dose/dose rate responses that challenge the LNT model have been highlighted and important dowels came from radiobiology studies conducted in Deep Underground Laboratories (DULs). These extreme ultra-low radiation environments are ideal locations to conduct below-background radiobiology experiments, interesting from basic and applied science. The INFN Gran Sasso National Laboratory (LNGS) (Italy) is the site where most of the underground radiobiological data has been collected so far and where the first in vivo underground experiment was carried out using Drosophila melanogaster as model organism. Presently, many DULs around the world have implemented dedicated programs, meetings and proposals. The general message coming from studies conducted in DULs using protozoan, bacteria, mammalian cells and organisms (flies, worms, fishes) is that environmental radiation may trigger biological mechanisms that can increase the capability to cope against stress. However, several issues are still open, among them: the role of the quality of the radiation spectrum in modulating the biological response, the dependence on the biological endpoint and on the model system considered, the overall effect at organism level (detrimental or beneficial). At LNGS, we recently launched the RENOIR experiment aimed at improving knowledge on the environmental radiation spectrum and to investigate the specific role of the gamma component on the biological response of Drosophila melanogaster.


Assuntos
Laboratórios , Proteção Radiológica , Animais , Drosophila melanogaster , Itália , Radiobiologia
11.
J Mol Biol ; 432(15): 4305-4321, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32512004

RESUMO

The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.


Assuntos
Drosophila/genética , Retroelementos , Telômero/genética , Animais , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcrição Gênica
12.
PLoS Genet ; 16(5): e1008815, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453722

RESUMO

Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease.


Assuntos
Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Proteínas do Complexo SMN/genética , Animais , Regulação para Baixo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Letais , Tamanho do Órgão , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/metabolismo
13.
Cells ; 9(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947614

RESUMO

The Drosophila melanogasterDmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins and histones. We had previously reported that, although loss of Drosophila ATPCL reduced levels of Acetyl-CoA, unlike its human counterpart, it does not affect global histone acetylation and gene expression, suggesting that its role in histone acetylation is either partially redundant in Drosophila or compensated by alternative pathways. Here, we describe that depletion of DmATPCL affects spindle organization, cytokinesis, and fusome assembly during male meiosis, revealing an unanticipated role for DmATPCL during spermatogenesis. We also show that DmATPCL mutant meiotic phenotype is in part caused by a reduction of fatty acids, but not of triglycerides or cholesterol, indicating that DmATPCL-derived Acetyl-CoA is predominantly devoted to the biosynthesis of fatty acids during spermatogenesis. Collectively, our results unveil for the first time an involvement for DmATPCL in the regulation of meiotic cell division, which is likely conserved in human cells.


Assuntos
Divisão Celular , Drosophila melanogaster/enzimologia , Complexos Multienzimáticos/metabolismo , Oxo-Ácido-Liases/metabolismo , Espermatogênese , Animais , Divisão Celular/genética , Masculino , Complexos Multienzimáticos/genética , Oxo-Ácido-Liases/genética , Espermatogênese/genética
14.
Cell Death Dis ; 10(12): 951, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836699

RESUMO

Heterochromatin Protein 1 (HP1) and the Mre11-Rad50-Nbs1 (MRN) complex are conserved factors that play crucial role in genome stability and integrity. Despite their involvement in overlapping cellular functions, ranging from chromatin organization, telomere maintenance to DNA replication and repair, a tight functional relationship between HP1 and the MRN complex has never been elucidated. Here we show that the Drosophila HP1a protein binds to the MRN complex through its chromoshadow domain (CSD). In addition, loss of any of the MRN members reduces HP1a levels indicating that the MRN complex acts as regulator of HP1a stability. Moreover, overexpression of HP1a in nbs (but not in rad50 or mre11) mutant cells drastically reduces DNA damage associated with the loss of Nbs suggesting that HP1a and Nbs work in concert to maintain chromosome integrity in flies. We have also found that human HP1α and NBS1 interact with each other and that, similarly to Drosophila, siRNA-mediated inhibition of NBS1 reduces HP1α levels in human cultured cells. Surprisingly, fibroblasts from Nijmegen Breakage Syndrome (NBS) patients, carrying the 657del5 hypomorphic mutation in NBS1 and expressing the p26 and p70 NBS1 fragments, accumulate HP1α indicating that, differently from NBS1 knockout cells, the presence of truncated NBS1 extends HP1α turnover and/or promotes its stability. Remarkably, an siRNA-mediated reduction of HP1α in NBS fibroblasts decreases the hypersensitivity to irradiation, a characteristic of the NBS syndrome. Overall, our data provide an unanticipated evidence of a close interaction between HP1 and NBS1 that is essential for genome stability and point up HP1α as a potential target to counteract chromosome instability in NBS patient cells.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica/genética , Proteínas Nucleares/genética , Animais , Homólogo 5 da Proteína Cromobox , Dano ao DNA/genética , Drosophila melanogaster/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genoma de Inseto/genética , Humanos , Masculino , Mutação/genética , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/patologia
15.
Front Physiol ; 10: 383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019471

RESUMO

The Citrate Lyase (ACL) is the main cytosolic enzyme that converts the citrate exported from mitochondria by the SLC25A1 carrier in Acetyl Coenzyme A (acetyl-CoA) and oxaloacetate. Acetyl-CoA is a high-energy intermediate common to a large number of metabolic processes including protein acetylation reactions. This renders ACL a key regulator of histone acetylation levels and gene expression in diverse organisms including humans. We have found that depletion of ATPCL, the Drosophila ortholog of human ACL, reduced levels of Acetyl CoA but, unlike its human counterpart, does not affect global histone acetylation and gene expression. Nevertheless, reduced ATPCL levels caused evident, although moderate, mitotic chromosome breakage suggesting that this enzyme plays a partial role in chromosome stability. These defects did not increase upon X-ray irradiation, indicating that they are not dependent on an impairment of DNA repair. Interestingly, depletion of ATPCL drastically increased the frequency of chromosome breaks (CBs) associated to mutations in scheggia, which encodes the ortholog of the mitochondrial citrate carrier SLC25A1 that is also required for chromosome integrity and histone acetylation. Our results indicate that ATPCL has a dispensable role in histone acetylation and prevents massive chromosome fragmentation when citrate efflux is altered.

16.
Chromosoma ; 127(4): 489-504, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120539

RESUMO

Many genes are required for the assembly of the mitotic apparatus and for proper chromosome behavior during mitosis and meiosis. A fruitful approach to elucidate the mechanisms underlying cell division is the accurate phenotypic characterization of mutations in these genes. Here, we report the identification and characterization of diamond (dind), an essential Drosophila gene required both for mitosis of larval brain cells and for male meiosis. Larvae homozygous for any of the five EMS-induced mutations die in the third-instar stage and exhibit multiple mitotic defects. Mutant brain cells exhibit poorly condensed chromosomes and frequent chromosome breaks and rearrangements; they also show centriole fragmentation, disorganized mitotic spindles, defective chromosome segregation, endoreduplicated metaphases, and hyperploid and polyploid cells. Comparable phenotypes occur in mutant spermatogonia and spermatocytes. The dind gene encodes a non-conserved protein with no known functional motifs. Although the Dind protein exhibits a rather diffuse localization in both interphase and mitotic cells, fractionation experiments indicate that some Dind is tightly associated with the chromatin. Collectively, these results suggest that loss of Dind affects chromatin organization leading to defects in chromosome condensation and integrity, which in turn affect centriole stability and spindle assembly. However, our results do not exclude the possibility that Dind directly affects some behaviors of the spindle and centrosomes.


Assuntos
Cromossomos de Insetos/genética , Proteínas de Drosophila/genética , Drosophila/citologia , Meiose , Espermatócitos/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Quebra Cromossômica , Segregação de Cromossomos , Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Larva/citologia , Masculino , Mutação , Fenótipo , Espermatócitos/citologia
17.
Radiat Res ; 190(3): 217-225, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29863430

RESUMO

Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and/or end points and the possible role of radiation quality in triggering the biological response.


Assuntos
Radiação de Fundo , Dano ao DNA/genética , Drosophila melanogaster/genética , Radiobiologia/tendências , Animais , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Drosophila melanogaster/efeitos da radiação , Proteção Radiológica
18.
J Cell Physiol ; 233(1): 23-29, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28262946

RESUMO

Natural background radiation of Earth and cosmic rays played a relevant role during the evolution of living organisms. However, how chronic low doses of radiation can affect biological processes is still unclear. Previous data have indicated that cells grown at the Gran Sasso Underground Laboratory (LNGS, L'Aquila) of National Institute of Nuclear Physics (INFN) of Italy, where the dose rate of cosmic rays and neutrons is significantly reduced with respect to the external environment, elicited an impaired response against endogenous damage as compared to cells grown outside LNGS. This suggests that environmental radiation contributes to the development of defense mechanisms at cellular level. To further understand how environmental radiation affects metabolism of living organisms, we have recently launched the FLYINGLOW program that aims at exploiting Drosophila melanogaster as a model for evaluating the effects of low doses/dose rates of radiation at the organismal level. Here, we will present a comparative data set on lifespan, motility and fertility from different Drosophila strains grown in parallel at LNGS and in a reference laboratory at the University of L'Aquila. Our data suggest the reduced radiation environment can influence Drosophila development and, depending on the genetic background, may affect viability for several generations even when flies are moved back to normal background radiation. As flies are considered a valuable model for human biology, our results might shed some light on understanding the effect of low dose radiation also in humans.


Assuntos
Radiação de Fundo/efeitos adversos , Drosophila melanogaster/efeitos da radiação , Fertilidade/efeitos da radiação , Longevidade/efeitos da radiação , Doses de Radiação , Exposição à Radiação/efeitos adversos , Fatores Etários , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Comportamento Animal/efeitos da radiação , Radiação Cósmica/efeitos adversos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Genótipo , Locomoção/efeitos da radiação , Masculino , Mutação , Nêutrons/efeitos adversos , Fenótipo , Proteínas Serina-Treonina Quinases
19.
Front Microbiol ; 8: 2349, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234315

RESUMO

Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet.

20.
Front Microbiol ; 8: 300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293225

RESUMO

This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides-Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA