Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Cancer ; 185: 105-118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972661

RESUMO

BACKGROUND: Several studies have reported the association of germline BRCA2 (gBRCA2) mutations with poor clinical outcomes in prostate cancer (PCa), but the impact of concurrent somatic events on gBRCA2 carriers survival and disease progression is unknown. PATIENTS AND METHODS: To ascertain the role of frequent somatic genomic alterations and histology subtypes in the outcomes of gBRCA2 mutation carriers and non-carriers, we correlated the tumour characteristics and clinical outcomes of 73 gBRCA2 and 127 non-carriers. Fluorescent in-situ hybridisation and next-generation sequencing were used to detect copy number variations in BRCA2, RB1, MYC and PTEN. Presence of intraductal and cribriform subtypes was also assessed. The independent impact of these events on cause-specific survival (CSS), metastasis-free survival and time to castration-resistant disease was assessed using cox-regression models. RESULTS: Somatic BRCA2-RB1 co-deletion (41% versus 12%, p < 0.001) and MYC amplification (53.4% versus 18.8%, p < 0.001) were enriched in gBRCA2 compared to sporadic tumours. Median CSS from diagnosis of PCa was 9.1 versus 17.6 years in gBRCA2 carriers and non-carriers, respectively (HR 2.12; p = 0.002), Median CSS in gBRCA2 carriers increased to 11.3 and 13.4 years in the absence of BRCA2-RB1 deletion or MYC amplification, respectively. Median CSS of non-carriers decreased to 8 and 2.6 years if BRCA2-RB1 deletion or MYC amplification were detected. CONCLUSIONS: gBRCA2-related prostate tumours are enriched for aggressive genomic features, such as BRCA2-RB1 co-deletion and MYC amplification. The presence or absence of these events modify the outcomes of gBRCA2 carriers.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Proteína BRCA2/genética , Heterozigoto , Mutação , Células Germinativas/patologia , Mutação em Linhagem Germinativa
2.
EMBO Mol Med ; 10(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30467127

RESUMO

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.


Assuntos
Reparo do DNA , Fator de Transcrição E2F1/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular , Progressão da Doença , Perfilação da Expressão Gênica , Recombinação Homóloga , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA