Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 391(1): 119-129, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39095205

RESUMO

Primaquine and Tafenoquine are the only approved drugs that can achieve a radical cure for Plasmodium vivax malaria but are contraindicated in patients who are deficient in glucose 6-phosphate dehydrogenase (G6PDd) due to risk of severe hemolysis from reactive oxygen species generated by redox cycling of drug metabolites. 5-hydroxyprimaquine and its quinoneimine cause robust redox cycling in red blood cells (RBCs) but are so labile as to not be detected in blood or urine. Rather, the quinoneimine is rapidly converted into primaquine-5,6-orthoquinone (5,6-POQ) that is then excreted in the urine. The extent to which 5,6-POQ contributes to hemolysis remains unclear, although some have suggested that it is a minor toxin that should be used predominantly as a surrogate to infer levels of 5-hydroxyprimaquine. In this report, we describe a novel humanized mouse model of the G6PD Mediterranean variant (hG6PDMed-) that recapitulates the human biology of RBC age-dependent enzyme decay, as well as an isogenic matched control mouse with human nondeficient G6PD hG6PDND In vitro challenge of RBCs with 5,6-POQ causes increased generation of superoxide and methemoglobin. Infusion of treated RBCs shows that 5,6-POQ selectively causes in vivo clearance of older hG6PDMed- RBCs. These findings support the hypothesis that 5,6-POQ directly induces hemolysis and challenges the notion that 5,6-POQ is an inactive metabolic waste product. Indeed, given the extreme lability of 5-hydroxyprimaquine and the relative stability of 5,6-POQ, these data raise the possibility that 5,6-POQ is a major hemolytic primaquine metabolite in vivo. SIGNIFICANCE STATEMENT: These findings demonstrate that 5,6-POQ, which has been considered an inert waste product of primaquine metabolism, directly induces ROS that cause clearance of older G6PDd RBCs. As 5,6-POQ is relatively stable compared with other active primaquine metabolites, these data support the hypothesis that 5,6-POQ is a major toxin in primaquine induced hemolysis. The findings herein also establish a new model of G6PDd and provide the first direct evidence, to our knowledge, that young G6PDd RBCs are resistant to primaquine-induced hemolysis.


Assuntos
Eritrócitos , Deficiência de Glucosefosfato Desidrogenase , Hemólise , Primaquina , Animais , Hemólise/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Primaquina/farmacologia , Primaquina/metabolismo , Camundongos , Humanos , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Modelos Animais de Doenças , Masculino , Antimaláricos/farmacologia
2.
Bioengineering (Basel) ; 11(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39199719

RESUMO

Administration of oxygen microbubbles (OMBs) has been shown to increase oxygen and decrease carbon dioxide in systemic circulation, as well as reduce lung inflammation and promote survival in preclinical models of hypoxia caused by lung injury. However, their impact on microenvironmental oxygenation remains unexplored. Herein, we investigated the effects of intraperitoneal administration of OMBs in anesthetized rats exposed to hypoxic ventilation (FiO2 = 0.14). Blood oxygenation and hemodynamics were evaluated over a 2 h time frame, and then organ and tissue samples were collected for hypoxic and metabolic analyses. Data showed that OMBs improved blood SaO2 (~14%) and alleviated tissue hypoxia within the microenvironment of the kidney and intestine at 2 h of hypoxia. Metabolomic analysis revealed OMBs induced metabolic differences in the cecum, liver, kidney, heart, red blood cells and plasma. Within the spleen and lung, principal component analysis showed a metabolic phenotype more comparable to the normoxic group than the hypoxic group. In the spleen, this shift was characterized by reduced levels of fatty acids and 2-hydroxygluterate, alongside increased expression of antioxidant enzymes such as glutathione and hypoxanthine. Interestingly, there was also a shuttle effect within the metabolism of the spleen from the tricarboxylic acid cycle to the glycolysis and pentose phosphate pathways. In the lung, metabolomic analysis revealed upregulation of phosphatidylethanolamine and phosphatidylcholine synthesis, indicating a potential indirect mechanism through which OMB administration may improve lung surfactant secretion and prevent alveolar collapse. In addition, cell-protective purine salvage was increased within the lung. In summary, oxygenation with intraperitoneal OMBs improves systemic blood and local tissue oxygenation, thereby shifting metabolomic profiles of the lung and spleen toward a healthier normoxic state.

3.
J Proteome Res ; 23(4): 1163-1173, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386921

RESUMO

Trauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.


Assuntos
Oclusão com Balão , Traumatismo Múltiplo , Humanos , Animais , Suínos , Multiômica , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/terapia , Aorta , Coagulação Sanguínea , Oclusão com Balão/métodos
4.
Ann Surg ; 278(6): e1299-e1312, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334680

RESUMO

OBJECTIVE: Advanced mass spectrometry methods were leveraged to analyze both proteomics and metabolomics signatures in plasma upon controlled tissue injury (TI) and hemorrhagic shock (HS)-isolated or combined-in a swine model, followed by correlation to viscoelastic measurements of coagulopathy via thrombelastography. BACKGROUND: TI and HS cause distinct molecular changes in plasma in both animal models and trauma patients. However, the contribution to coagulopathy of trauma, the leading cause of preventable mortality in this patient population remains unclear. The recent development of a swine model for isolated or combined TI+HS facilitated the current study. METHODS: Male swine (n=17) were randomized to either isolated or combined TI and HS. Coagulation status was analyzed by thrombelastography during the monitored time course. The plasma fractions of the blood draws (at baseline; end of shock; and at 30 minutes, 1, 2, and 4 hours after shock) were analyzed by mass spectrometry-based proteomics and metabolomics workflows. RESULTS: HS-isolated or combined with TI-caused the most severe omic alterations during the monitored time course. While isolated TI delayed the activation of coagulation cascades. Correlation to thrombelastography parameters of clot strength (maximum amplitude) and breakdown (LY30) revealed signatures of coagulopathy which were supported by analysis of gene ontology-enriched biological pathways. CONCLUSION: The current study provides a comprehensive characterization of proteomic and metabolomic alterations to combined or isolated TI and HS in a swine model and identifies early and late omics correlates to viscoelastic measurements in this system.


Assuntos
Transtornos da Coagulação Sanguínea , Choque Hemorrágico , Animais , Masculino , Coagulação Sanguínea , Transtornos da Coagulação Sanguínea/etiologia , Modelos Animais de Doenças , Proteômica , Choque Hemorrágico/complicações , Suínos , Tromboelastografia , Distribuição Aleatória
5.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205364

RESUMO

Importance: Phthalate chemicals are used to manufacture disposable plastic medical products, including blood storage bags and components of cardiopulmonary bypass (CPB) circuits. During cardiac surgery, patients can be inadvertently exposed to phthalate chemicals that are released from these plastic products. Objective: To quantify iatrogenic phthalate chemical exposure in pediatric patients undergoing cardiac surgery, and examine the link between phthalate exposure and post-operative outcomes. Design Setting and Participants: The study cohort included 122 pediatric patients undergoing cardiac surgery at Children's National Hospital. For each patient, a single plasma sample was collected pre-operatively and two additional samples were collected post-operatively upon return from the operating room (post-operative day 0) and the morning after surgery (post-operative day 1). Exposures: Concentrations of di(2-ethylhexyl)phthalate (DEHP) and its metabolites were quantified using ultra high-pressure liquid chromatography coupled to mass spectrometry. Main Outcomes and Measures: Plasma concentrations of phthalates, post-operative blood gas measurements, and post-operative complications. Results: Study subjects were subdivided into three groups, according to surgical procedure: 1) cardiac surgery not requiring CPB support, 2) cardiac surgery requiring CPB with crystalloid prime, and 3) cardiac surgery requiring CPB with red blood cells (RBCs) to prime the circuit. Phthalate metabolites were detected in all patients, and postoperative phthalate levels were highest in patients undergoing CPB with RBC-based prime. Age-matched (<1 year) CPB patients with elevated phthalate exposure were more likely to experience post-operative complications, including arrhythmias, low cardiac output syndrome, and additional post-operative interventions. RBC washing was an effective strategy to reduce DEHP levels in CPB prime. Conclusions and Relevance: Pediatric cardiac surgery patients are exposed to phthalate chemicals from plastic medical products, and the degree of exposure increases in the context of CPB with RBC-based prime. Additional studies are warranted to measure the direct effect of phthalates on patient health outcomes and investigate mitigation strategies to reduce exposure. Key Points: Question: Is cardiac surgery with cardiopulmonary bypass a significant source of phthalate chemical exposure in pediatric patients?Findings: In this study of 122 pediatric cardiac surgery patients, phthalate metabolites were quantified from blood samples before and after surgery. Phthalate concentrations were highest in patients undergoing cardiopulmonary bypass with red blood cell-based prime. Heightened phthalate exposure was associated with post-operative complications.Meaning: Cardiopulmonary bypass is a significant source of phthalate chemical exposure, and patients with heightened exposure may be at greater risk for postoperative cardiovascular complications.

6.
Front Physiol ; 14: 1151268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007990

RESUMO

Introduction: Exercise intolerance is a common clinical manifestation in patients with sickle cell disease (SCD), though the mechanisms are incompletely understood. Methods: Here we leverage a murine mouse model of sickle cell disease, the Berkeley mouse, to characterize response to exercise via determination of critical speed (CS), a functional measurement of mouse running speed upon exerting to exhaustion. Results: Upon observing a wide distribution in critical speed phenotypes, we systematically determined metabolic aberrations in plasma and organs-including heart, kidney, liver, lung, and spleen-from mice ranked based on critical speed performances (top vs. bottom 25%). Results indicated clear signatures of systemic and organ-specific alterations in carboxylic acids, sphingosine 1-phosphate and acylcarnitine metabolism. Metabolites in these pathways showed significant correlations with critical speed across all matrices. Findings from murine models were thus further validated in 433 sickle cell disease patients (SS genotype). Metabolomics analyses of plasma from 281 subjects in this cohort (with HbA < 10% to decrease confounding effects of recent transfusion events) were used to identify metabolic correlates to sub-maximal exercise test performances, as measure by 6 min walking test in this clinical cohort. Results confirmed strong correlation between test performances and dysregulated levels of circulating carboxylic acids (especially succinate) and sphingosine 1-phosphate. Discussion: We identified novel circulating metabolic markers of exercise intolerance in mouse models of sickle cell disease and sickle cell patients.

7.
Metabolites ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355108

RESUMO

Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or "long-COVID"). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan-a hallmark of disease severity in COVID-19-is not normalized in PASC patients, despite normalization of kynurenine levels-a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity.

8.
Mol Cell Endocrinol ; 549: 111641, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398053

RESUMO

Luteinizing hormone (LH) stimulates testosterone production from Leydig cells. Both LH and testosterone play important roles in spermatogenesis and male fertility. To identify LH - and testosterone - responsive transporter genes that play key roles in spermatogenesis, we performed large-scale gene expression analyses on testes obtained from adult control and Lhb knockout mice. We found a significant reduction in cystine/glutamate transporter encoding Slc7a11 mRNA in testes of Lhb null mice. We observed that Slc7a11/SLC7A11 expression was initiated pre-pubertally and developmentally regulated in mouse testis. Immunolocalization studies confirmed that SLC7A11 was mostly expressed in Sertoli cells in testes of control and germ cell-deficient mice. Western blot analyses indicated that SLC7A11 was significantly reduced in testes of mutant mice lacking either LH or androgen receptor selectively in Sertoli cells. Genetic and pharmacological rescue of Lhb knockout mice restored the testicular expression of Slc7a11 comparable to that observed in controls. Additionally, Slc7a11 mRNA was significantly suppressed upon Sertoli cell/testicular damage induced in mice by cadmium treatment. Knockdown of Slc7a11 in vitro in TM4 Sertoli cells or treatment of mice with sulfasalazine, a SLC7A11 inhibitor caused a significant reduction in intracellular cysteine and glutathione levels but glutamate content remained unchanged as determined by metabolomic analysis. Knockdown of Slc7a11 resulted in compensatory upregulation of other glutamate transporters belonging to the Slc1a family presumably to maintain intracellular glutamate levels. Collectively, our studies identified that SLC7A11 is an LH/testosterone-regulated transporter that is required for cysteine/glutathione but not glutamate homeostasis in mouse Sertoli cells.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Androgênios , Células de Sertoli , Androgênios/metabolismo , Animais , Cisteína/metabolismo , Cistina/metabolismo , Glutamatos/metabolismo , Glutationa/metabolismo , Homeostase , Células Intersticiais do Testículo/metabolismo , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Testículo/metabolismo , Testosterona/farmacologia
9.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571942

RESUMO

The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. The present large study sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on plasma from acutely ill patients collected while in the emergency department, at admission, or during hospitalization. Lipidomics analyses were also performed on COVID-19-positive or -negative subjects with the lowest and highest body mass index (n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged as highly relevant markers of disease severity, progression, and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for mechanistic follow-up studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.


Assuntos
COVID-19/metabolismo , Prognóstico , Doença Aguda , Adulto , Aminoácidos/sangue , Índice de Massa Corporal , Carnitina/análogos & derivados , Carnitina/sangue , Estudos de Coortes , Ácidos Graxos/sangue , Feminino , Humanos , Cinurenina/sangue , Aprendizado de Máquina , Metabolômica , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Triptofano/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA