Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Death Discov ; 4: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581895

RESUMO

We and others have demonstrated that stimulants such as methamphetamine (METH) exerts immunosuppressive effects on the host's innate and adaptive immune systems and has profound immunological implications. Evaluation of the mechanisms responsible for T-cell immune dysregulation may lead to ways of regulating immune homeostasis during stimulant use. Here we evaluated the effects of METH on T cell cycle entry and progression following activation. Kinetic analyses of cell cycle progression of T-cell subsets exposed to METH demonstrated protracted G1/S phase transition and differentially regulated genes responsible for cell cycle regulation. This result was supported by in vivo studies where mice exposed to METH had altered G1 cell cycle phase and impaired T-cell proliferation. In addition, T cells subsets exposed to METH had significant decreased expression of cyclin E, CDK2 and transcription factor E2F1 expression. Overall, our results indicate that METH exposure results in altered T cell cycle entry and progression. Our findings suggest that disruption of cell cycle machinery due to METH may limit T-cell proliferation essential for mounting an effective adaptive immune response and thus may strongly contribute to deleterious effect on immune system.

2.
PLoS One ; 11(10): e0164966, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760221

RESUMO

Methamphetamine (METH) is a widely used psychostimulant that severely impacts the host's innate and adaptive immune systems and has profound immunological implications. T cells play a critical role in orchestrating immune responses. We have shown recently how chronic exposure to METH affects T cell activation using a murine model of lymphocytic choriomeningitis virus (LCMV) infection. Using the TriCOM (trinary state combinations) feature of GemStone™ to study the polyfunctionality of T cells, we have analyzed how METH affected the cytokine production pattern over the course of chronic LCMV infection. Furthermore, we have studied in detail the effects of METH on splenic T cell functions, such as cytokine production and degranulation, and how they regulate each other. We used the Probability State Modeling (PSM) program to visualize the differentiation of effector/memory T cell subsets during LCMV infection and analyze the effects of METH on T cell subset progression. We recently demonstrated that METH increased PD-1 expression on T cells during viral infection. In this study, we further analyzed the impact of PD-1 expression on T cell functional markers as well as its expression in the effector/memory subsets. Overall, our study indicates that analyzing polyfunctionality of T cells can provide additional insight into T cell effector functions. Analysis of T cell heterogeneity is important to highlight changes in the evolution of memory/effector functions during chronic viral infections. Our study also highlights the impact of METH on PD-1 expression and its consequences on T cell responses.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Coriomeningite Linfocítica/imunologia , Metanfetamina/efeitos adversos , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Baço/imunologia , Subpopulações de Linfócitos T/metabolismo , Regulação para Cima
3.
J Neuroinflammation ; 13(1): 91, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27117066

RESUMO

BACKGROUND: Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. METHODS: ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. RESULTS: Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p < 0.0336) and protein expression (*p < 0.022). Further analysis of P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p < 0.05) but decreased cytoplasmic expression after 48 h METH treatment, suggesting protein mobilization from the cytoplasm to the membrane which occurs upon microglial stimulation with METH. Forty-eight hour METH treatment increased microglial migration towards Fractalkine (CX3CL1) compared to control (****p < 0.0001). Migration toward CX3CL1 was confirmed to be P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p < 0.0001). Similarly, 48 h METH treatment increased microglial phagocytosis compared to control (****p < 0.0001), and pretreatment of P2X7R antagonist reduced METH-induced phagocytosis (****p < 0.0001). Silencing the microglial P2X7R decreased TNF-α (*p < 0.0363) and IL-10 production after 48 h of METH treatment. Additionally, our studies demonstrate increased P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. CONCLUSIONS: This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Microglia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
4.
J Leukoc Biol ; 99(1): 213-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26302754

RESUMO

The novel transmembrane G protein-coupled receptor, trace amine-associated receptor 1 (TAAR1), represents a potential, direct target for drugs of abuse and monoaminergic compounds, including amphetamines. For the first time, our studies have illustrated that there is an induction of TAAR1 mRNA expression in resting T lymphocytes in response to methamphetamine. Methamphetamine treatment for 6 h significantly increased TAAR1 mRNA expression (P < 0.001) and protein expression (P < 0.01) at 24 h. With the use of TAAR1 gene silencing, we demonstrate that methamphetamine-induced cAMP, a classic response to methamphetamine stimulation, is regulated via TAAR1. We also show by TAAR1 knockdown that the down-regulation of IL-2 in T cells by methamphetamine, which we reported earlier, is indeed regulated by TAAR1. Our results also show the presence of TAAR1 in human lymph nodes from HIV-1-infected patients, with or without a history of methamphetamine abuse. TAAR1 expression on lymphocytes was largely in the paracortical lymphoid area of the lymph nodes with enhanced expression in lymph nodes of HIV-1-infected methamphetamine abusers rather than infected-only subjects. In vitro analysis of HIV-1 infection of human PBMCs revealed increased TAAR1 expression in the presence of methamphetamine. In summary, the ability of methamphetamine to activate trace TAAR1 in vitro and to regulate important T cell functions, such as cAMP activation and IL-2 production; the expression of TAAR1 in T lymphocytes in peripheral lymphoid organs, such as lymph nodes; and our in vitro HIV-1 infection model in PBMCs suggests that TAAR1 may play an important role in methamphetamine -mediated immune-modulatory responses.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Metanfetamina/farmacologia , Receptores Acoplados a Proteínas G/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ciclo Celular/genética , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Infecções por HIV/genética , Infecções por HIV/imunologia , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-2/metabolismo , Metanfetamina/efeitos adversos , Receptores Acoplados a Proteínas G/metabolismo , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/imunologia , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Linfócitos T/imunologia
5.
Front Microbiol ; 6: 793, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322025

RESUMO

Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1ß, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.

6.
J Neuroimmune Pharmacol ; 9(5): 668-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135400

RESUMO

Mounting evidence indicates that alcohol-induced neuropathology may result from multicellular responses in which microglia cells play a prominent role. Purinergic receptor signaling plays a key role in regulating microglial function and, more importantly, mediates alcohol-induced effects. Our findings demonstrate that alcohol increases expression of P2X4 receptor (P2X4R), which alters the function of microglia, including calcium mobilization, migration and phagocytosis. Our results show a significant up-regulation of P2X4 gene expression as analyzed by real-time qPCR (***p < 0.002) and protein expression as analyzed by flow cytometry (**p < 0.004) in embryonic stem cell-derived microglial cells (ESdM) after 48 hours of alcohol treatment, as compared to untreated controls. Calcium mobilization in ethanol treated ESdM cells was found to be P2X4R dependent using 5-BDBD, a P2X4R selective antagonist. Alcohol decreased migration of microglia towards fractalkine (CX3CL1) by 75 % following 48 h of treatment compared to control (***p < 0.001). CX3CL1-dependent migration was confirmed to be P2X4 receptor-dependent using the antagonist 5-BDBD, which reversed the effects as compared to alcohol alone (***p < 0.001). Similarly, 48 h of alcohol treatment significantly decreased phagocytosis of microglia by 15 % compared to control (*p < 0.05). 5-BDBD pre-treatment prior to alcohol treatment significantly increased microglial phagocytosis (***p < 0.001). Blocking P2X4R signaling with 5-BDBD decreased the level of calcium mobilization compared to ethanol treatment alone. These findings demonstrate that P2X4 receptor may play a role in modulating microglial function in the context of alcohol abuse.


Assuntos
Etanol/farmacologia , Microglia/efeitos dos fármacos , Microglia/fisiologia , Receptores Purinérgicos P2X4/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Humanos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia
7.
J Immunol ; 185(5): 2867-76, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20668216

RESUMO

Methamphetamine (METH) abuse is known to be associated with an inordinate rate of infections. Although many studies have described the association of METH exposure and immunosuppression, so far the underlying mechanism still remains elusive. In this study, we present evidence that METH exposure resulted in mitochondrial oxidative damage and caused dysfunction of primary human T cells. METH treatment of T lymphocytes led to a rise in intracellular calcium levels that enhanced the generation of reactive oxygen species. TCR-CD28 linked calcium mobilization and subsequent uptake by mitochondria in METH-treated T cells correlated with an increase in mitochondrion-derived superoxide. Exposure to METH-induced mitochondrial dysfunction in the form of marked decrease in mitochondrial membrane potential, increased mitochondrial mass, enhanced protein nitrosylation and diminished protein levels of complexes I, III, and IV of the electron transport chain. These changes paralleled reduced IL-2 secretion and T cell proliferative responses after TCR-CD28 stimulation indicating impaired T cell function. Furthermore, antioxidants attenuated METH-induced mitochondrial damage by preserving the protein levels of mitochondrial complexes I, III, and IV. Altogether, our data indicate that METH can cause T cell dysfunction via induction of oxidative stress and mitochondrial injury as underlying mechanism of immune impairment secondary to METH abuse.


Assuntos
Imunossupressores/toxicidade , Metanfetamina/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Células Cultivadas , Estimulantes do Sistema Nervoso Central/toxicidade , Citosol/efeitos dos fármacos , Citosol/imunologia , Citosol/metabolismo , Relação Dose-Resposta Imunológica , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/imunologia , Microscopia de Fluorescência , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Subpopulações de Linfócitos T/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA