Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38472892

RESUMO

The objective in this work was the evaluation of the stability and content of bioactive compounds (total phenols and total flavonoids) and antioxidant activity of emulsions of ethanolic extracts of propolis obtained by ultrasound, during simulated in vitro digestion. The emulsions prepared with propolis extracts were evaluated on certain properties: their emulsion efficiency, stability (zeta potential, particle size, electrical conductivity), content of bioactive compound (total phenolics and total flavonoids), antioxidant activity and their behavior during simulated in vitro digestion. Based on the total phenol content, an emulsification efficiency of 87.8 ± 1.9% to 97.8 ± 3.8% was obtained. The particle size of the emulsions was 322.5 ± 15.33 nm to 463.9 ± 33.65 nm, with a zeta potential of -31.5 ± 0.66 mV to -28.2 ± 1.0 mV and electrical conductivity of 22.7 ± 1.96 µS/cm to 30.6 ± 0.91 µS/cm. These results indicate good emulsion stability. During simulated in vitro digestion, the content of bioactive compounds (total phenolics, total flavonoids) and antioxidant activity were affected during 77 days of storage at 4 °C. It was concluded that the emulsion process fulfills the function of protecting the bioactive compounds and therefore their biological activity.

2.
Molecules ; 27(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144558

RESUMO

In the present study, the effects of ultrasound (10, 20, and 30 min) on the bioactive compounds, antioxidant capacity, enzymatic inhibition, and in vitro digestion of six honey extracts from the Oaxaca state, Mexico, were analyzed. Significant differences were found in each honey extract with respect to the ultrasonic treatment applied (p < 0.05). In the honey extract P-A1 treated with 20 min of ultrasound, the phenols reached a maximum concentration of 29.91 ± 1.56 mg EQ/100 g, and the flavonoids of 1.92 ± 0.01 mg EQ/100 g; in addition, an inhibition of α-amylase of 37.14 ± 0.09% was noted. There were also differences in the phases of intestinal and gastric digestion, presenting a decrease in phenols (3.92 ± 0.042 mg EQ/100 g), flavonoids (0.61 ± 0.17 mg EAG/100 mg), antioxidant capacity (8.89 ± 0.56 mg EAG/100 mg), and amylase inhibition (9.59 ± 1.38%). The results obtained from this study indicate that, in some honeys, the processing method could increase the concentration of bioactive compounds, the antioxidant capacity, and the enzymatic inhibition; however, when subjected to in vitro digestion, the properties of honey are modified. The results obtained could aid in the development of these compounds for use in traditional medicine as a natural source of bioactive compounds.


Assuntos
Mel , alfa-Glucosidases , Antioxidantes/farmacologia , Flavonoides/farmacologia , Mel/análise , Fenóis/análise , Extratos Vegetais/farmacologia , alfa-Amilases
3.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918775

RESUMO

The objective of this study was to compare the effects of the incorporation of microcapsules or nanoemulsions with Opuntiaoligacantha on the quality of fresh cheese. Three treatments were established: Control, cheese with microcapsules (Micro), and cheese with nanoemulsion (Nano). The parameters evaluated were physicochemical (moisture, ash, fat, proteins, and pH), microbiological (mesophilic aerobic bacteria, mold-yeast, and total coliforms), functional (total phenols, flavonoids, and antioxidant capacity), and texture (hardness, elasticity, cohesion, and chewiness) during storage for 45 days at 4 °C. The results showed that adding microcapsules and nanoemulsion did not affect the physicochemical parameters of the cheese. Total coliforms decreased in all samples from the first days of storage (Control: 4.23 ± 0.12, Micro: 3.27 ± 0.02, and Nano: 2.68 ± 0.08 Log10 CFU), as well as aerobic mesophiles and mold-yeast counts. Regarding the functional properties, an increase in total phenols was observed in all treatments. The texture profile analysis showed that the addition of microcapsules and nanoemulsion influenced hardness (Control: 8.60 ± 1.12, Micro: 1.61 ± 0.31, and Nano: 3.27 ± 0.37 N). The antimicrobial effect was greater when nanoemulsions were added, while adding microcapsules influenced the antioxidant activity more positively.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Queijo/análise , Composição de Medicamentos , Nanopartículas/química , Queijo/microbiologia , Fenômenos Químicos , Emulsões/química , Flavonoides/análise , Óleos Voláteis/análise , Tamanho da Partícula
4.
Food Sci Biotechnol ; 28(5): 1553-1561, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695955

RESUMO

The use of unconventional sources is very relevant in the food area. In the present study the development of active films with the addition of bioextract (BE) or microencapsulated bioextract (MBE) from xoconostle (Opuntia oligacantha) on chayotextle starch was investigated. The film formulations were: 4 g of chayotextle starch, 2 g of glycerol and 180 g of water, three films with BE added (0.4, 0.8 and 1.2 g) and three films with MBE added (0.4, 0.8 and 1.2 g). Total phenols, total flavonoids, antioxidant activity (ABTS and DPPH), Salmonella typhimurium inhibition, color and mechanical properties of the films were analyzed. The film with 1.2 g of MBE showed high concentration of total phenols (54.12 ± 0.77 mg EAG/100 g), total flavonoids (16.65 ± 0.10 mg QE/100 g) and antioxidant activity (29.11 ± 0.48 and 41.42 ± 1.81 mg EAA for ABTS and DPPH respectively). The addition of bioextract from xoconostle is an option for the development of active films with antioxidant properties.

5.
Antioxidants (Basel) ; 8(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640249

RESUMO

The objective of the present study was to determine the effect of the application of a nanoemulsion made of orange essential oil and Opuntia oligacantha extract on avocado quality during postharvest. The nanoemulsion was applied as a coating in whole fruits, and the following treatments were assessed: concentrated nanoemulsion (CN), 50% nanoemulsion (N50), 25% nanoemulsion (N25) and control (C). Weight loss, firmness, polyphenol oxidase (PPO) activity, total soluble solids, pH, external and internal colour, total phenols, total flavonoids, antioxidant activity by 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), while the structural evaluation of the epicarp was assessed through histological cuts. Significant differences were found (p < 0.05) among the treatments in all the response variables. The best results were with the N50 and N25 treatments for firmness and weight loss, finding that the activity of the PPO was diminished, and a delay in the darkening was observed in the coated fruits. Furthermore, the nanoemulsion treatments maintained the total phenol and total flavonoid contents and potentiated antioxidant activity at 60 days. This histological study showed that the nanoemulsion has a delaying effect on the maturation of the epicarp. The results indicate that using this nanoemulsion as a coating is an effective alternative to improve the postharvest life of avocado.

6.
Foods ; 8(10)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546736

RESUMO

Consumers demand so-called natural in which additive and antioxidant preservatives are from natural origin. Research focuses in using extracts from plants and fruits that are rich in bioactive compounds such as phenolics and betalains, but these are also prone to interact with proteins and are exposed to suffer degradation during storage. In this work, we developed a fortified yogurt with the addition of betalains and polyphenols from cactus pear extract encapsulated in a multiple emulsion (ME) (W1/O/W2). Different formulations of ME were made with two polymers, gum arabic (GA) and maltodextrin (MD) and with the best formulation of ME four types of yogurt were prepared using different % (w/w) of ME (0%, 10%, 20% and 30%). Bioactive compounds, antioxidant activity, color and lactic acid bacteria (LAB) were analyzed in the different yogurts over 36 days of shelf life. Furthermore, in vitro simulated digestion was evaluated. The yogurts had significant (p < 0.05) differences and the ME protected the bioactive compounds, activity of antioxidants and color. The ME did not affect the viability of LAB during 36 days of storage. The in vitro digestion showed the best bioaccessibilities of antioxidant compounds with the yogurts with ME.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA