Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Cardiovasc Med ; 11: 1396996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756750

RESUMO

Fabry disease (FD), also known as Anderson-Fabry disease, is a hereditary disorder of glycosphingolipid metabolism, caused by a deficiency of the lysosomal alpha-galactosidase A enzyme. This causes a progressive accumulation of glycosphingolipids in tissues and organs which represents the main pathogenetic mechanism of FD. The disease is progressive and multisystemic and is characterized by early symptoms and late complications (renal, cardiac and neurological dysfunction). Fatigue and exercise intolerance are early common symptoms in FD patients but the specific causes are still to be defined. In this narrative review, we deal with the contribution of cardiac and pulmonary dysfunctions in determining fatigue and exercise intolerance in FD patients.

2.
Front Cardiovasc Med ; 11: 1341590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327490

RESUMO

Fabry disease (FD) is a lysosomal storage disorder due to the impaired activity of the α-galactosidase A (GLA) enzyme which induces Gb3 deposition and multiorgan dysfunction. Exercise intolerance and fatigue are frequent and early findings in FD patients, representing a self-standing clinical phenotype with a significant impact on the patient's quality of life. Several determinants can trigger fatigability in Fabry patients, including psychological factors, cardiopulmonary dysfunctions, and primary alterations of skeletal muscle. The "metabolic hypothesis" to explain skeletal muscle symptoms and fatigability in Fabry patients is growing acknowledged. In this report, we will focus on the primary alterations of the motor system emphasizing the role of skeletal muscle metabolic disarrangement in determining the altered exercise tolerance in Fabry patients. We will discuss the most recent findings about the metabolic profile associated with Fabry disease offering new insights for diagnosis, management, and therapy.

3.
Cell Mol Life Sci ; 80(11): 323, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819449

RESUMO

BACKGROUND: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. OBJECTIVES: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. METHODS: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). RESULTS: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through ß-AR stimulation. CONCLUSIONS: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox.


Assuntos
Catecolaminas , Doxorrubicina , Ratos , Camundongos , Animais , Catecolaminas/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Apoptose , Miócitos Cardíacos/metabolismo , Macrófagos , Estresse Oxidativo
4.
iScience ; 26(3): 106074, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879801

RESUMO

Skeletal muscle (SM) pain and fatigue are common in Fabry disease (FD). Here, we undertook the investigation of the energetic mechanisms related to FD-SM phenotype. A reduced tolerance to aerobic activity and lactate accumulation occurred in FD-mice and patients. Accordingly, in murine FD-SM we detected an increase in fast/glycolytic fibers, mirrored by glycolysis upregulation. In FD-patients, we confirmed a high glycolytic rate and the underutilization of lipids as fuel. In the quest for a tentative mechanism, we found HIF-1 upregulated in FD-mice and patients. This finding goes with miR-17 upregulation that is responsible for metabolic remodeling and HIF-1 accumulation. Accordingly, miR-17 antagomir inhibited HIF-1 accumulation, reverting the metabolic-remodeling in FD-cells. Our findings unveil a Warburg effect in FD, an anaerobic-glycolytic switch under normoxia induced by miR-17-mediated HIF-1 upregulation. Exercise-intolerance, blood-lactate increase, and the underlying miR-17/HIF-1 pathway may become useful therapeutic targets and diagnostic/monitoring tools in FD.

5.
Oxid Med Cell Longev ; 2021: 6684568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815657

RESUMO

BACKGROUND: Ergogenic nutritional supplementation is sought by professional athletes for improving physical performance; nevertheless, scientific evidence to support the chronic use of L-Arginine among water polo players is missing. METHODS: Seventeen male professional water polo players were randomly assigned to assume 5 grams per day of L-Arginine (n = 9) or placebo (n = 8) for 4 weeks. The players' fitness level was assessed in the maximal speed swimming test. Ear lobe blood samples taken before and after the effort for serum lactate content were analyzed. A speed-to-lactate ratio was generated at the baseline and after 4 weeks of treatment. We also tested the effects of L-Arginine in vitro, measuring NO production, mitochondrial respiration, and gene expression in human fibroblasts. RESULTS: L-Arginine did not modify BMI, muscle strength, and maximal speed at 200 meters after 4 weeks. However, L-Arginine ameliorated oxidative metabolism to exercise as suggested by the statistically significant lower lactate-to-speed ratio, which was not observed in placebo-treated controls. In vitro, L-Arginine induced the expression of a key regulator of mitochondrial biogenesis (PGC1α) and genes encoding for complex I and increased the production of nitric oxide and the maximal oxygen consumption rate. CONCLUSIONS: Chronic L-Arginine is safe and effective in ameliorating the oxidative metabolism of professional water polo players, through a mechanism of enhanced mitochondrial function.


Assuntos
Arginina/farmacologia , Suplementos Nutricionais , Aptidão Física/fisiologia , Esportes Aquáticos , Adulto , Exercício Físico , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Biogênese de Organelas
6.
Cells ; 10(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467677

RESUMO

Insulin resistance (IRES) is a pathophysiological condition characterized by the reduced response to insulin of several tissues, including myocardial and skeletal muscle. IRES is associated with obesity, glucose intolerance, dyslipidemia, and hypertension, evolves toward type 2 diabetes, and increases the risk of developing cardiovascular diseases. Several studies designed to explore the mechanisms involved in IRES allowed the identification of a multitude of potential molecular targets. Among the most promising, G Protein Coupled Receptor Kinase type 2 (GRK2) appears to be a suitable one given its functional implications in many cellular processes. In this review, we will discuss the metabolic role of GRK2 in those conditions that are characterized by insulin resistance (diabetes, hypertension, heart failure), and the potentiality of its inhibition as a therapeutic strategy to revert both insulin resistance and its associated phenotypes.


Assuntos
Diabetes Mellitus/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação , Insulina/metabolismo , Células Secretoras de Insulina , Camundongos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Peptídeos/química , Fenótipo , Fosforilação , Risco , Transdução de Sinais
7.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256128

RESUMO

The involvement of GRK2 in cancer cell proliferation and its counter-regulation of p53 have been suggested in breast cancer even if the underlying mechanism has not yet been elucidated. Furthermore, the possibility to pharmacologically inhibit GRK2 to delay cancer cell proliferation has never been explored. We investigated this possibility by setting up a study that combined in vitro and in vivo models to underpin the crosstalk between GRK2 and p53. To reach this aim, we took advantage of the different expression of p53 in cell lines of thyroid cancer (BHT 101 expressing p53 and FRO cells, which are p53-null) in which we overexpressed or silenced GRK2. The pharmacological inhibition of GRK2 was achieved using the specific inhibitor KRX-C7. The in vivo study was performed in Balb/c nude mice, where we treated BHT-101 or FRO-derived tumors with KRX-C7. In our in vitro model, FRO cells were unaffected by GRK2 expression levels, whereas BHT-101 cells were sensitive, thus suggesting a role for p53. The regulation of p53 by GRK2 is due to phosphorylative events in Thr-55, which induce the degradation of p53. In BHT-101 cells, the pharmacologic inhibition of GRK2 by KRX-C7 increased p53 levels and activated apoptosis through the mitochondrial release of cytochrome c. These KRX-C7-mediated events were also confirmed in cancer allograft models in nude mice. In conclusion, our data showed that GRK2 counter-regulates p53 expression in cancer cells through a kinase-dependent activity. Our results further corroborate the anti-proliferative role of GRK2 inhibitors in p53-sensitive tumors and propose GRK2 as a therapeutic target in selected cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA