Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biodegradation ; 35(1): 47-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37436663

RESUMO

In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.


Assuntos
Compostos de Amônio , Águas Residuárias , Desnitrificação , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia , Elétrons , Oxirredução , Anaerobiose , Reatores Biológicos , Compostos de Amônio/metabolismo , Oxidantes
2.
Water Sci Technol ; 73(12): 2849-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27332829

RESUMO

Microbial fuel cells (MFCs) are capable of removing the organic matter contained in water while generating a certain amount of electrical power at the same time. One of the most important aspects in the operation of MFCs is the formation of biofilms on the anode. Here, we report the characterization of different carbon electrodes and biofilm using a rapid and easy methodology for the growth of biofilms. The biofilms were developed and generated a voltage in less than 4 days, obtaining a maximum of 0.3 V in the cells. Scanning electron microscopy images revealed that growth of the biofilm was only on the surface of the electrode, and consequently both carbon cloth Electrochem and carbon cloth Roe materials showed a greater quantity of volatile solids on the surface of the anode and power density. The results suggested that the best support was carbon cloth Electrochem because it generated a power density of 13.4 mW/m(2) and required only a few hours for the formation of the biofilm.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Carbono/análise , Eletrodos , Microscopia Eletrônica de Varredura , Fatores de Tempo
3.
Biosens Bioelectron ; 50: 373-81, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23891866

RESUMO

Bioelectrochemical systems (BESs) are based on the catalytic activity of biofilm on electrodes, or the so-called bioelectrodes, to produce electricity and other valuable products. In order to increase bioanode performance, diverse electrode materials and modification methods have been implemented; however, the factors directly affecting performance are yet unclear. In this work carbon cloth electrodes were modified by thermal, chemical, and electrochemical oxidation to enhance oxygenated surface groups, to modify the electrode texture, and consequently the electron transfer rate and biofilm adhesion. The oxidized electrodes were physically, chemically, and electrochemically characterized, then bioanodes were formed at +0.1 V vs. Ag/AgCl using domestic wastewater amended with acetate. The bioanode performance was evaluated according to the current and charge generated. The efficacy of the treatments were in the order Thermal>Electrochemical>Untreated>Chemical oxidation. The maximum current observed with untreated electrode was 0.152±0.026 mA (380±92 mA m(-2)), and it was increased by 78% and 28% with thermal and electrochemical oxidized electrodes, respectively. Moreover, the volatile solids correlated significantly with the maximum current obtained, and the electrode texture was revealed as a critical factor for increasing the bioanode performance.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Carbono/química , Grafite/química , Acetatos/química , Eletrodos , Oxirredução , Prata/química , Compostos de Prata/química , Águas Residuárias/química
4.
Bioresour Technol ; 134: 276-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23500585

RESUMO

Garden compost leachate was used to form microbial bioanodes under polarization at -0.4, -0.2 and +0.1 V/SCE. Current densities were 6.3 and 8.9 A m(-2) on average at -0.4 and +0.1 V/SCE respectively, with acetate 10 mM. The catalytic cyclic voltammetry (CV) showed similar electrochemical characteristics for all bioanodes and indicated that the lower currents recorded at -0.4V/SCE were due to the slower interfacial electron transfer rate at this potential, consistently with conventional electrochemical kinetics. RNA- and DNA-based DGGE evidenced that the three dominant bacterial groups Geobacter, Anaerophaga and Pelobacter were identical for all bioanodes and did not depend on the polarization potential. Only non-turnover CVs showed differences in the redox equipment of the biofilms, the highest potential promoting multiple electron transfer pathways. This first description of a potential-independent electroactive microbial community opens up promising prospects for the design of stable bioanodes for microbial fuel cells.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Jardinagem , Solo , Acetatos/análise , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Eletroforese em Gel de Gradiente Desnaturante , Eletricidade , Técnicas Eletroquímicas , Eletrodos/microbiologia , Genes Bacterianos/genética , RNA Ribossômico 16S/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-22486663

RESUMO

One of the main problems associated with the operation of air biofilters is the loss of performance caused by drying of the bioactive support, as the removal capacity of contaminants by the microorganisms is dependent on their water content. In this work, biofilms from a microbial consortium adapted to toluene were grown on stainless steel slides. The biofilms were dried in stoppered flasks with saturated saline solutions to obtain final water activities of 97.4 %, 83.9 %, 74.8 % and 32 %. The biofilms were characterized by a sorption isotherm Type III with toluene; the water desorption isotherm was fitted to the BET model and the biofilm hydrophobicity was also determined. Specific oxygen consumption rates decreased at lower Aw from 60 µg O(2)/mg protein/h to zero activity. Biofilm activity, represented by a toluene consumption rate, and others physical properties presented a critical point between Aw 0.84 and 0.97. Biological activity of dried biofilms was restored either partially or completely, depending on the extent of drying and rewetting method.


Assuntos
Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Filtração , Leveduras/metabolismo , Poluentes Atmosféricos/metabolismo , Poluição do Ar/prevenção & controle , Biodegradação Ambiental , Ionização de Chama , Umidade , Interações Hidrofóbicas e Hidrofílicas , Espectrofotometria , Aço Inoxidável/química , Tolueno/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA