Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(12): 1416-1422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37591936

RESUMO

Two-dimensional flat-band systems have recently attracted considerable interest due to the rich physics unveiled by emergent phenomena and correlated electronic states at van Hove singularities. However, the difficulties in electrically detecting the flat-band position in field-effect structures are slowing down the investigation of their properties. In this work, we use indium selenide (InSe) as a flat-band system due to a van Hove singularity at the valence-band edge in a few-layer form of the material without the requirement of a twist angle. We investigate tunnelling photocurrents in gated few-layer InSe structures and relate them to ambipolar transport and photoluminescence measurements. We observe an appearance of a sharp change in tunnelling mechanisms due to the presence of the van Hove singularity at the flat band. We further corroborate our findings by studying tunnelling currents as a reliable probe for the flat-band position up to room temperature. Our results create an alternative approach to studying flat-band systems in heterostructures of two-dimensional materials.

2.
Nat Commun ; 14(1): 44, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596799

RESUMO

Defects in solids are unavoidable and can create complex electronic states that can significantly influence the electrical and optical properties of semiconductors. With the rapid progress in the integration of 2D semiconductors in practical devices, it is imperative to understand and characterize the influence of defects in this class of materials. Here, we examine the electrical response of defect filling and emission using deep level transient spectroscopy (DLTS) and reveal defect states and their hybridization in a monolayer MOCVD-grown material deposited on CMOS-compatible substrates. Supported by aberration-corrected STEM imaging and theoretical calculations, we find that neighboring sulfur vacancy pairs introduce additional shallow trap states via hybridization of individual vacancy levels. Even though such vacancy pairs only represent ~10% of the total defect concentration, they can have a substantial influence on the off currents and switching slopes of field-effect transistors based on 2D semiconductors. Our technique, which can quantify the energy states of different defects and their interactions, allows rapid and nondestructive electrical characterization of defect states important for the defect engineering of 2D semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA